TMS320C674x DSP
CPU and Instruction Set

Reference Guide

I3 TExXAS

INSTRUMENTS

Literature Number: SPRUFESB
July 2010

SPRUFE8B-July 2010

Copyright © 2010, Texas Instruments Incorporated

l '{EXAS

NSTRUMENTS
Contents
=T =T = 17
1 0T LU 1 o T 19
1.1 L YT 1= 20
1.2 DSP Features and OPtiONS . .uueuuseisueerssssssersessss sttt sanesassssastsraretanrsraisesannerns 20
1.3 D 1] o] 11 (= od B = 22
1.3.1 Central Processing Unit (CPU)uuiiuiiiieeiiiiieiiteriessissssssssnssasssian s siassssssansssansssas 23
TG 307 11 (= 1 o /1= 0 T o 23
1.3.3 Memory and Peripheral OptiONSuueeeirsueeesrsistesirastesssaissesssaasessssinrssssaannressannnresins 23
2 CPU Data Paths and CONLIOl ...uuieiiiiiiiiiii s e e 25
21 0o [Tox 1T 26
2.2 General-Purpose RegISIEr FIlESuiiiiiiiiiii i st r s s s e s s rr e s s aa i n e s annnes 26
23 0 T g o g 29
2.4 Register File CroSS PathSuiiiueiiieiieiiie i s aas 30
25 Memory, Load, and StOre Pathis e 31
2.6 Data AdAreSS PathS .uuuuiuseiseiisiisiiiserrsrs s 31
2.7 (7= 110 1= 1T o 31
2.7.1 Special TIMiNg CONSIAEIrAtIONS . ..ueiiiuueeiiiiie st s raasae s saassessaaannessaaannrssaaannnes 33
2.8 (T a1 0 IR LYo 153 =1 gl 1= P 34
2.8.1 Register Addresses for Accessing the Control REJISIErS ...uvviiuiiiiiiiiiiriiiiriri e 35
2.8.2 Pipeline/Timing of CoNtrol REQIStEr ACCESSES . .uiiiiiuuuteirriitreriaitresiraistessaaisrssaaaanrssaaannnes 35
2.8.3 Addressing Mode Register (AMR)uueeiiiiiieesisineesaaaanressaantesseaanneessaanneessssnnnessensnnnes 36
2.8.4 Control Status RegIStEr (CSR) .uuuuuutiietirteiaterassssirs s ass s ae s sareransranns 38
2.8.5 Galois Field Polynomial Generator Function Register (GFPGFR)ciiiiiiiiiiiiiiiiiiinniiaeess 40
2.8.6 Interrupt Clear REQISIEr (ICR) 1.uuueeiiiieesisaineessasannesssaaneeessaanneessaansnesssssnnesssssnneessssnnnes 41
2.8.7 Interrupt Enable RegiSter (IER) ..uuuueiieiiiiiiriiri e s sar s s s annes 42
2.8.8 Interrupt Flag RegiSter (IFR) ..uuueeiiiiiieiiiiite st e raatse s sraase s ssaaae s ssaanan s s saannesaaannnes 43
2.8.9 Interrupt Return Pointer RegIiSter (IRP) ..uviiiiieeiiiiie s siee s seaeee s sssnnee s sannnessaannneesannnnnes 43
2.8.10 Interrupt Set RegIStEr (ISR) wuuueiuseiieiiiteiterasisa s s sa e s s aaar e aanns 44
2.8.11 Interrupt Service Table Pointer Register (ISTP) .o ernnnes 45
2.8.12 Nonmaskable Interrupt (NMI) Return Pointer Register (NRP) ...viiiiieiiiiii i siinneeennnnes 45
2.8.13 E1 Phase Program Counter (PCEL) ..uuiiuutirueiiteiisserintssneisssiasssanssansssnnsisnnssannsiannens 46
29 Control Register File EXIENSIONS .. .uiiiiieeiiitsetiiiee s iaaate s saaa s e ssaan s e s ssannesssannnasssaannnsssnnnns 46
2.9.1 Debug Interrupt Enable Register (DIER) ..uiiiiieiiiiiiiieiiiieessasseessssnnnesssssnneessssnnnesssnnnnes a7
2.9.2 DSP Core Number Register (DNUM) . .uuiiuseiiieiissirinsrineisisssassssiansassssnssssiss s sasesanns 48
2.9.3 Exception Clear RegiSter (ECR) ..uuuiiiuueeiiiiiieeiriitssasiaatssssaaasesssaanssssssaansssssaanssssannnnnes 48
2.9.4 Exception Flag RegiSter (EFR) ..uueiiiiiueeeiiiintesssaanneessaannsessaanneessssnnnesssssnnnesssssnnessssnnnes 49
2.9.5 GMPY Polynomial—A Side RegiSter (GPLYA) .uuiiuteiiiiritiiineiiissiiiss it 50
2.9.6 GMPY Polynomial—B Side RegiSter (GPLYB) ...iiiiiuiiiiiiiiieiiiiitesiranessisaisssssaainnsssaannness 50
2.9.7 Internal Exception Report Register (IERR) ...uueiiiiiiiiiiiiii s iiseessasseesssssnneessannneesannnnnes 51
2.9.8 SPLOOP Inner Loop Count REGISLEr (ILC) wuuvuuriruueirunrirseiannerissssinssrsesanssransssanneranssannns 52
2.9.9 Interrupt Task State RegiSter (ITSR) 1.uuueeiiiiiiiiiiiiieiirii i s ssainns s saaaaessaaannns 52
2.9.10 NMI/Exception Task State RegiSter (NTSR) ..uueiiiiiiutieriiinnrerraansressssnnnesssssnneesssssnneessnnnnes 53
2.9.11 Restricted Entry Point Register (REP) ...iuiiiisiiiiiii i e n e 53
2.9.12 SPLOOP Reload Inner Loop Count Register (RILC) ..uviiiiiiiiiiiiiesiiiiieeiriinssnsiineessnnnnees 54
2.9.13 Saturation Status REQISIEr (SSR) +iuuureeiiiiteetiaineeraaanrersaannterseaanneesraanneessassnnessessnnees 54
SPRUFE8B-July 2010 Contents 3

Copyright © 2010, Texas Instruments Incorporated

I3 TEXAS
INSTRUMENTS
www.ti.com
2.9.14 Time Stamp Counter Registers (TSCL and TSCH) ..uvuiiiiiiiiiiiiiiiii i rneenaes 55
2.9.15 Task State RegIStEr (TSR) ..iuuuueetiiieteiaaiateeraaatressaattessaanressaaannessaaannessaaanneessannnes 57
2.10 Control Register File Extensions for Floating-Point OPerationscivviieeiiiiinreiriiesiiinesiaainnes 58
2.10.1 Floating-Point Adder Configuration Register (FADCR) ...vvuuiiiuiirisiirinririssiiirriisssinseransiainess 59
2.10.2 Floating-Point Auxiliary Configuration Register (FAUCR)ciiiiiiiiiiiiiiiie s iiiinessaaineesanannees 61
2.10.3 Floating-Point Multiplier Configuration Register (FMCR)uvieiiiiiieiiiiiiieiiiisninnesessnnns 63
S T 0 Y TS T 65
3.1 Instruction Operation and EXecution NOtAtIONSueiiueeiiusiiisiriirirs i rar s sanreras 66
3.2 Instruction Syntax and OPCOde NOLALIONSeeeiiieteeiriitee s ra e s saaine s saaanresaaanressrannneesss 68
3.2.1 32-Bit OPCOUE MAPS +tetunreesiiannnessannnnessesnneessaanneessaanneesseansnessessnnesssssnneessssnnnessssnnes 69
3.2.2 16-Bit OPCOUE MBPS tuueeuuteiunnerseisuntssss e sas s sss e rasssaanssaas st sasssasesanssanns 69
3.3 Overview of IEEE Standard Single- and Double-Precision FOrMatsScoccvviiiiiiiniiiiiiiiiiieennianes 70
B T T Y [To [[= =T od [(o g T o T = L P 71
3.3.2 DOUDIE-PreciSion FOIMALS ..uuiuueirseiseeinseiaeerassssar e s s sian s ss s ss s aanrerannesnns 72
3.4 3= = Y] 0] £ 73
35 L 1= 111 @] o 1T = o] g 1 74
3.5.1 Example Parallel COOEuuiiuiiretiieiinte i ratsss s s sian s s r s 76
3.5.2 Branching Into the Middle of an EXeCUte PACKELeiiiiiiiiiiiiiii i i inre e annns 76
3.6 [©F0] g o 11 0T aF= U @] o =T - {0 g 1= 77
3.7 ST RN =T B =T -1 1T 77
3.8 RESOUICE CONSIIAINTS . uuuteiiiaeeeisaeeessra s e e st e et s aaa s s et saaaa s e s sa s e st aann e s s saaannesssannnnsssannnnnssn 78
3.8.1 Constraints on Instructions Using the Same Functional Unitccovviiiiiiniiiiiiiiieranannnes 78
3.8.2 Constraints on the Same Functional Unit Writing in the Same Instruction Cyclec.ccvvuen. 78
3.8.3 Constraints on Cross Paths (1X @nd 2X) ..uuvueeeiiiiiiiiiiiieei i irasne s saisss s ssaanessaannnnes 78
3.8.4 Cross Path StallS ..uuuiseisiisiiiiisriiii s 79
3.8.5 Constraints 0N LOAAS and SEOMES ...uiueeriutsiiseerneisserrseiase it arsssarsrasssinns 80
3.8.6 Constraints on LoNg (40-Bit) DAta ...uuueeeiiiiiiieiiiiieiriise s saaess s rraae s saainss s aaaanr e aaaanns 80
3.8.7 Constraints 0N ReQISIEr REAUS ...uvviiiiiieeiiiiiessiiinessaanreessaanseessaanneessaannnessessnneessnnnnes 81
3.8.8 CoNstraints 0N REQISIEr WIILES .uuuueiiueiiiteiitrisia s r e ra s aanes 81
3.8.9 Constraints 0N AMR WIIEES ..uuuueiiiiiiite it s aatre s sraase s saaae st saaaan s s aaannnsssaannresaannnes 82
3.8.10 Constraints 0N MUIICYCIE NOPS ...uiiiiiieiiiii i s aanree s saannressaannnessaannessaannneessnnnnes 82
3.8.11 Constraints on UNitleSS INSIIUCHIONS 1.uuiusiiiseiiie i s naaeens 82
3.8.12 Constraints on Floating-Point INSIIUCLIONSeeiiiiiiiiii i v aaanns 85
3.9 X Lo 1LY] o 1Y, Yo 1= 87
3.9.1 Linear AddresSiNg MOOEuuiuuiiiteiieiiite i et s e s s 87
3.9.2 Circular ADdresSiNG MOOEuuueeeiiiiieeiaaiteeraateesraasse s saaaaassssassessaaannnssaaannnesssannnes 88
3.9.3 Syntax for Load/Store Address GENEIatiONeeiieeieresrsssnreessaanreessaanneessaarneessessnnesssnnnnes 90
3.10 Compact INStructions 0N the CPU ...uiuiiiiiiiiii i s r s s e e asnns 91
3.10.1 Compact INSrUCHON OVEIVIEW ...ueiiuseesiiieeessaaatesssaasssessaaasasssaassessaaannnssaaannsssssnnnnes 91
3.10.2 Header WOrd FOMMEAL ..uuueiueisersersinsereiserserassaseresasssasrsssse s rarrassrnesassnns 92
3.10.3 Processing Of FEtCh PaCKetS ..uiureiieiiiiii i s s n e 96
3.10.4 EXxecute Packet RESIICHONSueeiiiiieiiiiiie s s e ssaaasas s saanase s saannessaannessanannnes 96
3.10.5 Available Compact INSIIUCHIONS .. .uveeiiireesiiineesseaineessaasnneessaannressasnnneessannneessssnnnessnnnns 96
3.11 INStruction CoOmMPALIDIIILY w.uuesisseites e 97
0 o [T3 B T4 o DT o o] (0 L 98
[T =] T PP PPPTRE 575
4.1 Pipeline OPeration OVEIVIEWuuiissiseiseesiats st tae e sass st rasstaaa s sasssannerannasnnns 576
OB R (o o 577
N I T o 0T [578
R T (=T o1 1 | 579
4.1.4 Pipeline Operation SUMIMAIYeeeeiraeeesaaaneesaaaanreeaaaanseesaaanseessaanssestaaannesssssnnsessnns 580
4.2 Pipeline Execution Of INSrUCHION TYPES 1.uuuueriiiiitteiriittesraante s ssaiste s taaaessasanrsssaanrssssannnnnsss 585
4.2.1 Single-CyCle INSIUCHIONS 1.uuutiseiiiti it s e s s e s a s sr s s s n s raneanaes 588
Contents SPRUFE8B-July 2010

Copyright © 2010, Texas Instruments Incorporated

I3 TEXAS
INSTRUMENTS
www.ti.com
4.2.2 Two-Cycle Instructions and .M Unit Nonmultiply Operationsccevviiiiriieiniriiirinieia, 589
e B (o] 1= |] 0T (0] LN 590
4.2.4 Extended MUltiply INSTIUCHONS +.uuuuuseiiieesiriiesisair s srsiar e ss e s saaarae s saanssesaaannesannns 592
S S o T To I 1] 1 0 1o T N 593
T = - 1 Tod o T [£ 1 0T (o g N 594
4.2.7 TWO-CYCle DP INSIIUCHIONS .uvteiiisstesiiiunesisssssssaissesssasnssessaasssessaassnesisassnesisssnnssssnns 596
4.2.8 FOUr-CYCIE INSITUCTIONS . uuuseisssnatssasisserasessaatssaesrsesae s sastssansssaasaanssansssanrssnnsinnns 597
e B 1 I 1= (0T o) o N 598
4.2.10 Double-Precision (DP) Compare INSrUCHONS ...uueiiiiusereisiinresrsiinrssiriinssesiaiissssisainnssians 598
4.2.11 ADDDP/SUBDP INStrUCHONS +.uuuuttesssenseessssnneessasnneesssannnesssasnnesssaannnessmsnnnesssssnnesssnns 599
0 |V 1 = I 1 1 i (1 o 1T N 599
4.2.13 MPYID INSIIUCTION 4 uuttinatesssistnsssassse s ssasssesssansesssaaanssssaasnsesssanntesssannsnssssssnnssssnns 600
4.2.14 MPYDP INSITUCHON L utteiiittetteaeeesssaannesssaaaneessaannneesaanneessaannnessaannnessaannnesssssnneessnnn 600
4.2.15 MPYSPDP INSIIUCLION 1 .uueettiiiittetiaaaaessaaase s saaaase s ssaaan e e s saan s s s s sannesssaansnessaannnessnnns 601
4.2.16 MPYSP2DP INSIIUCHION uuutteiiiuntesissunesisnssesssaissesssaansssssaassssssassnnsssaassnssisssnnssssnns 601
4.3 FUNCtional UnNit CONSITAINTS 1. uutiussitesstisaterse s s rae s s a e s s s e e s e s s s n s sa e sa s e raneranes 602
T AN T U o @0 13 =1) N 602
4.3.2 M-UNit CONSIFAINTS utttiiuttesiisasesirnsae s ssaiseessaasn e s ssaas s et saaasssssaanssestaannesssssnnssssnns 606
4.3.3 L-UNit CONSITAINTS . uuteeiieeeessaanneesssannnesssanneesaasnneessaannnessaaannnessaannenssesnnnesssssnnessnnns 614
4.3.4 D-Unit INStruction CONSIIAINTSuueseiiieesiaeineesaaanr e ssaanr e e saaanra st saannasssaansnessaannnsssnnns 618
4.4 Performance CONSIAEIAtIONS ...ueuiiuueeiiisieeesra i raaare s s aare st saae st aaaa e s s aaannsssaannnsssannnnesss 621
4.4.1 Pipeline Operation With Multiple Execute Packets in a Fetch Packetccvcvvviiiiiiiiiiinnnns 621
V01 o3 o 1= 0 L@ TN 623
4.4.3 Memory CONSIAEIALIONS t.uuuusetiinasesissnesssaisnesssaasnesssaanssessaasssesssansnestsassnssssssnnssssnns 624
5 L= U 0 =P 627
5.1 (O YT 1= N 628
5.1.1 Types of Interrupts and SigNals USEdiviieeiiiiiiiiiiiiiieriie s sriaes s aaanns 628
5.1.2 Interrupt Service Table (IST) tiuuueeeiiiiieeeesianteessaaneeessaanneessaannnessassnneessssnneessesnnnersennnes 630
5.1.3 Summary of Interrupt Control REGISIEIS ...uuiieiiiiieiiiii i s raes 634
5.2 Globally Enabling and Disabling INteITUPLS ...uueeeeiiiiiieiiiiie e iri i r e s r s rare s s raanae s s saaanesannns 634
5.3 Individual INterrupt CONTIOl ... ueees it e s i e e s e s e e e s s sanee e s saanneesaaannnessaannneessannnnessannnnnssn 637
5.3.1 Enabling and Disabling INTEITUDPLS . .uevuueiretirieiineiirire s s sa s e ranesanes 637
TR S = 1 (1 LS 30) T 1 (= U 0] £ 637
5.3.3 Setting and Clearing INtEITUPLS ..uveuiieiueesresieeesssanresssannnesssannresssasnneessasnnnesssssnneessnnnnes 638
5.3.4 Returning From INtErruUPt SEIVICING «uuueeruusirnrirneiiee i iareasssiar s ranssanns 638
5.4 Interrupt Detection and PrOCESSINGuieiiiettetiiites e aaaiaae e ssain s s saaa s e s saantassaannsssaaannness 639
5.4.1 Setting the Nonreset INterrupt FIag ..ooueeeiiiii i i i e reasee e s seanee s saannnessannnnresaannnes 639
5.4.2 Conditions for Processing a NONreset INTEITUPLuueiieeriesiriiie i raneaanes 640
5.4.3 Saving TSR Context in Nonreset INterrupt ProCeSSING «.vuuueieiiiieteriiiireeiraieessrainnresaaanns 642
5.4.4 Actions Taken During Nonreset INterrupt ProCESSING «evvvriineterresneerrssneesssssnneessssnneessssnnnes 643
5.4.5 Conditions for Processing a Nonmaskable INterruptooevvieiiiiiiiiiiini s 643
5.4.6 Saving of Context in Nonmaskable Interrupt ProCeSSIiNgevvviiiieiniiiiiiiiiiiirniineennaness 646
5.4.7 Actions Taken During Nonmaskable Interrupt ProCeSSiNgevveerreiiiieeeriiiineesraninneesesnnness 646
5.4.8 Setting the RESET INEITUPE FIAQ - euueueneineeieineeraeeeaeeaeeeaeeaesaeaneanrsaneaeensansanrneanennans 646
5.4.9 Actions Taken During RESET Interrupt ProCeSSINGevviiieisririiineiiiiineiiaiinessaiinnsessanns 647
55 Performance CONSIAEIAtIONS ...uuiussiuersirstis st s e raranas 648
5.5.1 General PerfOrManCeooiiiiieiiiii e it ea s e s s et e e ssanne e ssanne et aaannnessannnneraaannnes 648
I o= 1T T (=T = ot 1o) o 648
5.6 Programming CONSIOEIAtiONS . .ueeiiiieeesesianteeseaaneeessaanneessaannnessassnnesssasnneessssnnnessesnnnessssnnnnns 648
5.6.1 Single ASSIgNMENt ProgramImMing . ..eu.ueessssssussssuseisseesmssssinsssnnsiannesasssissssaneiannerarsainns 648
TG0 N (=] (=0 T =T (1) 649
5.6.3 Manual Interrupt Processing (POING) ..ueeeieeieiesiiiieeiiisesssannresssasnneessasnneessaannneessnnnnes 650
ST T 01 651
SPRUFE8B-July 2010 Contents 5

Copyright © 2010, Texas Instruments Incorporated

13 TEXAS
INSTRUMENTS

www.ti.com

(01 S U I ot =T o} 110 1 [PPSR
6.1 (O YT 1=
6.1.1 Types of Exceptions and Signals Usedccceviiiiiiiiiiiiiinniiiiinenaans
6.1.2 EXCEPLION SErVICE VECION wuviiiireeeiseineessaisneesssaanneessannnesssennneessnnns
6.1.3 Summary of Exception Control RegiSterscevviveririiiiinriiiiinnennnnns
6.2 [y Cot= o] (o] o I @0 11 o)
6.2.1 Enabling and Disabling External EXCEPLIONScvvviierreriiinnerriinnneessnnns
6.2.2 Pending EXCEPLONS ..uuuiiiuteiitiristiriaiie i risiar s ranesnnns
6.2.3 Exception Event ContexXt SAVING ..viviieeeiriiireiiiiireeirainessiaannnesaanns
6.2.4 Returning From EXCeption SErviCiNgeevvviverreriiineeerissnneersesnnnesennns
6.3 Exception Detection and ProCeSSING ..vvvueriveeiiteiineirinirinsiiireisinesineraneens
6.3.1 Setting the Exception Pending Flagcovieeiiiiiiiiiiiiiiiiiiians
6.3.2 Conditions for Processing an External EXCEPLioNcviviveveriiiineeninnnns
6.3.3 Actions Taken During External Exception (EXCEP) Processing
6.3.4 NesSted EXCEPLONS .ouiuueieiiiiiesiiiite s ssaiers s saanare s raannaesaanes
6.4 Performance ConSIderationSsiveeivevisissrisinseiiaserirnaa s
6.4.1 General PerformancCecuvvieeiiiiiiiiiiiini i
6.4.2 Pipeline INteractionc.eeeiiiiieieiiiii i rrire e raaas
6.5 Programming COoNSiderationsiiiveeeesieiererisnnneesieanneessssnnnesssssnneessnnnnes
6.5.1 Internal EXCEPLIONS .iuuuiiiuieiintiriitisintinse e raessia s
6.5.2 Internal Exception Report Register (IERR)coviiiiiiiiiiiiieiiiiieiinnns
6.5.3 Software EXCEPLION .oviiieeiiiiiieisiiintesessnneessannneessaanneessannnnesaanns
Software Pipelined Loop (SPLOOP) Buffer ..o
7.1 Software PIPeliNiNg «ovueivieiiiiiiiir i
7.2 Software PIPelining ..uoeeeeiiiiieiiiiii i s
7.3 IS 1011 To (oo)
7.4 SPLOOP Hardware SUPPOIT «..uueisstiissesiaseiaseisisssssssansesasssasssnsssannsianes
42 0 R I To o 1 = U 1=
7.4.2 Loop Buffer Count Register (LBC) ..uvvveiiiiiiiieiiiiiinisiiieeiinesnnnss
7.4.3 Inner Loop Count Register (ILC) ..uiiiieieiiiiiiiiiiiineesiaanessrnanneeaanns
7.4.4 Reload Inner Loop Count Register (RILC) ...uuueiiiiiiniriiiiiiineiiianennnns

7.45 Task State Register (TSR), Interrupt Task State Register (ITSR), and
NMI/Exception Task State Register (NTSR)vvvvviiiiiiiiiiiiniiine,
7.5 SPLOOP-Related INSIIUCIONS .uuueeiiiiaeeiiiiieessniieessaisse s sannssssaannesannns
7.5.1 SPLOOP, SPLOOPD, and SPLOOPW INStrUCLIONS +...vvvvueriinnerinnernnenns
7.5.2 SPKERNEL and SPKERNELR INStrUCIONS ...coiiiiieiiiiiiiiieiiiinneainnnes
7.5.3 SPMASK and SPMASKR INSIrUCHONS ..viiiiiuieiiiiiieeiiiiineiininnnenianes
7.6 Basic SPLOOP EXamMPIe ..ovuueeiiniiiiiiiie i s s es s nsnssnneenas
7.6.1 Some Points About the Basic SPLOOP Examplecccoivviiiiiinninnnnns
7.6.2 Same Example Using the SPLOOPW INStrUCIONcvvvviiuiieiiiinnneiinnnns
7.6.3 Some Points About the SPLOOPW Exampleccvvievviiiiiiiiiinninnenn.
7.7 [o 10 =01
7.7.1 Software Pipeline Execution From the Loop Bufferccevvviiiinniiinnns
7.7.2 Stage Boundary TEIMINOIOGY ..evvuerivueriieeiiierieiiiniiieiinrerineaainnss
7.7.3 Loop BUffer Operationcuvceieeeiiiiiieiiiieiiiane s reanee s raanneaanns
7.8 EXECULION PalterNS .uuuueseiiiiiee i st ss s as s aannes
7.8.1 Prolog, Kernel, and Epilog Execution Patternsccvvveviiineninninnnnss
7.8.2 Early-Exit EXecUtion Patternoiciieeiiiiii i rninne s anaas
7.8.3 Reload EXecution Patterncceeeiviiieesiiiiieiiiiesiinssirainneeaaanns
7.9 Loop Buffer Control Using the Unconditional SPLOOP(D) Instruction
7.9.1 Initial Termination Condition Test and ILC Decrementcvvvveneinnnns
7.9.2 Stage Boundary Termination Condition Test and ILC Decrement
7.9.3 Using SPLOOPD for Loops with Known Minimum lIteration Counts

Contents

Copyright © 2010, Texas Instruments Incorporated

SPRUFE8B-July 2010

I3 TEXAS
INSTRUMENTS
www.ti.com
7.9.4 Program Memory Fetch Enable Delay During EPilOgvveeivieiiiiiiiiniiiinie i enineanness 686
7.9.5 Stage Boundary and SPKERNEL(R) POSItION ..uvviuiiiisiiiiiiiiiiiiinisis s s naes 686
SN ST I Yo I =101 =T gl =1 o T 686
7.9.7 Restrictions on Accessing ILC and RILC ...viiuuiiiiiiiiiini i i ss s annes 690
7.10 Loop Buffer Control Using the SPLOOPW INSIIUCLIONuuueeiiiiiiiieiiiitesrrinres s srannee s snannee s anannnees 690
7.10.1 Initial Termination Condition Using the SPLOOPW CoNditioNevvviiiuiniiiiiniesiiiiinsinninness 691
7.10.2 Stage Boundary Termination Condition Using the SPLOOPW Conditioncvvevvieeinineinness 691
7.10.3 Interrupting the Loop Buffer When Using SPLOOPW ... rrrieeeennnees 691
7.10.4 Under-Execution of Early Stages of SPLOOPW When Termination Condition Becomes True
WHhile INtErruPt DIaINING . .eeuueessuseseeieesaste s erassae s sasss s st aaa s aastarsrannssanrsransins 692
7.11 UsiNg the SPMASK INSIUCHION . .uiitteiiiieeiaasaatesasaate e ssaana e s saanse s ssannessaaannnsssnnnnnessaannnes 692
7.11.1 Using SPMASK to Merge Setup Code EXampPleceiiiiiiieiiiiinieriiiiiisiissessinnnesasannns 693
7.11.2 Some Points About the SPMASK to Merge Setup Code Examplecoovvviiiiiiiiinininieninnnn, 694
7.11.3 Using SPMASK to Merge Reset Code EXamplevveeiiiiiiiiiiiiiiiinii e 695
7.11.4 Some Points About the SPMASK to Merge Reset Code EXamplecccevviiiinieiiiiiinneinniinnss 696
7.11.5 Returning from an INEITUPE .. .ueieeiie e r s s s s rar e raneaanns 696
7.12 Program Memory FetCh CONIOluuiuseiieeiiiii i s r s aaes 696
7.12.1 Program Memory Fetch DiSable ...ic.ueiiiiiiiiiii i s s 697
7.12.2 Program Memory FetCh ENADIEicueiiieiiiiiiiiiii it s s e e 697
00 T | 01T 00 £ 697
7.13.1 Interrupting the LOOP BUTfer . ..uuuiiiiie i e s s r s anaanees 697
7.13.2 Returning to an SPLOOP(D/W) After an INterrupt ..ovueevieeiiieiniteiierieisiersaee e saneaanees 698
45 TR T o= o) o) 698
7.13.4 Branch to Interrupt, Pipe-DOWN SEQUENCEeiiiiietiiiiiiieeiriinisssranssesisiissssssainnsssaainnns 698
7.13.5 Return from Interrupt, Pipe-Up SEQUENCE ...uuiiiuiiiiiiiiiiiitiiie it risssinrsssesansrannasnnss 698
7.13.6 Disabling Interrupts During Loop Buffer Operationcccevviiiisiiiiiiieeiiiiieeiraiinesaannneess 698
7.14 BranCh INSIUCHONS ...uuiistiiiseiiitinteii i e a e st e s e s e s s aanenanes 699
7.15 Instruction Resource Conflicts and SPMASK OpPerationuveeeivieriiisiinerieiriirisins i 699
7.15.1 Program Memory and Loop Buffer Resource ConfliCtScviiiiiiiiiiiiiiiiiiiiiie e 700
7.15.2 Restrictions on Stall Detection Within SPLOOP Operationoceeesiviissssissinesismiinneimiinnns 700
7.16 Restrictions on Cross Path STallSuvueeiiiiiiiiii i s 700
7.17 Restrictions on AMR-Related StallSueiiuseiiseiiiiiiiri i s 700
7.18 Restrictions on Instructions Placed in the Loop BUfer ...uvieeiiiiiiiiiii e e 701
8 L1 U I V] 1T T P PPN 703
8.1 L0 = T 704
8.2 (ST o1 1 o T 1Y o T[T 704
8.2.1 Privilege Mode After RESELiriiiiiiiieitiiaeetsaantee s sasnteessaanseessasnnessaaanneessannnnessnnnnes 704
8.2.2 EXecution MOOE TranSItiONS ..ueuuuseiseerssssssssseiasessassssiasssasssanssansssassssasstannssanssinns 704
S 20 TS U o 1= V7= 1/ o T [704
S0 S O 1= g 1V o[705
8.3 Interrupts and EXCeption HaNAIiNG «...eevueeiieiiieiin i r e s s rs s s n s e aanes 706
8.3.1 Inhibiting INterrupts iN USEr MOOEuuueiiiiiiiiiiiiiie i s ra e s s s e s araane e ssann e e s sanns 706
8.3.2 Privilege and INtEITUPLS . .uueetiiieestesieeeseasneessaanneesssannnesssannneessasnnnessasnnnessssnnneesssnnnes 706
8.3.3 Privilege and EXCEPLIONS .uuuiuutiruseiseeiassessnerseisns s sians s sas e st 706
8.3.4 Privilege and Memory ProteCHONeeeiiiiieeiiiiiesiaite s sraste s ssaae s saaanasssaaannssaaannnes 706
8.4 (@0 T=T= 11T S35 G =1 S 706
8.4.1 Entering User Mode from SUperviSor MOOEvviueiiieiiiiiiie i nsnesanes 707
8.4.2 Entering Supervisor Mode from USEr MOOEeviiiieiiiiiiiiie i ssaine s snaannnesaanns 707
A INSTrUCTiON CoMPaAtiDIlITY tuiniiiiiiii et e e eas 709
B Mapping Between Instruction and Functional Unitccoiiiiiiiiiiiiiicr e 715
C .D Unit InStructions and OPCOAE MaPS ..cueuiiuinieie it e et ee e e e e e e e eaeenenanens 721
Ccl1 Instructions Executing in the .D Functional UNitooeiiiiiiiiiii e rr e e s anne e 722
C.2 Opcode Map Symbols and MEaANINGS . ..ueeiiiiuuteiiniieiriitesiiaate s taaissssaaasnrssssaanrressannnns 722
SPRUFE8B-July 2010 Contents 7

Copyright © 2010, Texas Instruments Incorporated

I3 TEXAS

INSTRUMENTS

www.ti.com

O T 7 2 1 @] o Yoo o[- Y =T o1 724
C.4 16-Bit OPCOUE MaAPS .uuuuuteiiinteetaaaaeessaaaat e s saaaan e s s saannte s ssansa st saannessaaannnessaannnesssannnesssannnes 725
.L Unit Instructions and OPCOdE MaAPScuieiuiniiieieieeiee ettt e e et e e ee e e aneneaens 733
D.1 Instructions Executing in the .L FUuNCtional Unitceiiiiiiiiiiii i sesee s sesnnee s ssnnnneessnnnnneann 734
D.2 Opcode Map Symbols and MEANINGS . .euuueiruuriruseirneiiserire i irisr s rae s rasssanns 735
[20 T 1 2 @ o0 o L= /= L 735
D.4 16-Bit OPCOUE MaAPS tuuueteiiiineeetiainteeseaanntessaanntessaannesssasnneessssnnnesssssnneessssnnnessesnneessesnnnens 736
M Unit InStructions and OPCOAE MAPS ..vivieiiiiiiee et e e e e e e e eaenenens 741
E.l Instructions Executing in the .M Functional UNitooieiiiiiiii i e rr e s enneee s 742
E.2 Opcode Map Symbols and MEANINGS +..uuuueetiiuunesirisnesisaisresaaianressraasrastsaassessiaassnestaainnssssans 743
E.3 B2 = 1 @ o T Yo = /=T o £ 743
E.4 G T =71 oo Yo (= 1V o o1 744
.S Unit INStructions and OPCOTE MaPSuiuiiieiiiiei et et e e e et ae e e e e eeeeaeenns 745
F.1 Instructions Executing in the .S FUNCLoNal UNiteiiiiiiiiiiii i i s eiine e s s sssnr e sennnnee e sannnnenss 746
F.2 Opcode Map Symbols and MEANINGS +.ueuuutiiineiiteiieerits st ra s sais e i saneanaes 747
F.3 RG22 =T @ o Ta Lo [1V = o N 747
F.4 G 71 @ o Yot Yo (= 1V - o1 PP 750
D, L, 08 .S UNIt OPCOUE MAPS tuttieiiniitititiat ettt sttt ettt taetaeastaaaeaeanatrneneaennnes 757
G.1 Opcode Map Symbols and MEANINGSeeiiuiiiiiiieiiiaare s iaaaare s saaaase s saaaneesaaannressaaanreesaannnes 758
L b 1 oo 0 To L= 1o oL 758
L N G T = 1 @] oo Lo = Y =T o1 759
No Unit Specified Instructions and OPCOde MaPS ..c.cueiiiinii e e e e e areens 763
H.1 Instructions Executing With No Unit SPecifiedeeiiiiiiiiiii i e e 764
H.2 Opcode Map Symbols and MEaNINGS ...viuiieeteriiineesssaneesssasnneessasnneessssanressssnnneesssannnessesnnnesss 764
[PR G 1 = 1 A oo 0 o [1V T o 1 765
[PR T = @ o0 o L= /= L 765
RS AV A=Y Lo g T = 113 o] Y/ PP 769
Contents SPRUFE8B-July 2010

Copyright © 2010, Texas Instruments Incorporated

I3 TEXAS
INSTRUMENTS
www.ti.com
List of Figures

1-1. TMS320C674X DSP BlOCK DIiagram uueuuseiseesssissssissseiassssassssissssssiassrassssisssrasssansesansssaneins 22
A O o B I =1 = B o 1 27
2-2. Storage Scheme for 40-Bit Data in @ RegISter Pailc.uuvieiiiieiiiiiii i sae 28
2-3. Addressing Mode RegiSter (AMR)eeiiiieiiiiiateerraae et s et et saaae e s saaan s s aaann e s aaaann e araannreraan 36
2-4. Control Status ReQiStEr (CSR) . uuuuiiuuteiiiiiieiirii i s r st rr e st as i n s as e saannneras 38
2-5. PWRD Field of Control Status RegiSter (CSR) ...u.uuttiiueiiiesiiieiiteiitiriasisss it rasssaasssinssannsiaeens 38
2-6. Galois Field Polynomial Generator Function Register (GFPGFR)ciiiiiiiiiiiii i naeee e 40
2-7. Interrupt Clear REGISIEr (ICR) ... uuuiieesiiieeesssiiate st ssaassee s saase et saaae s s asaanssssaannrsssannnnessns 41
2-8. Interrupt Enable RegiSter (IER)uueiiueiriitiite i riat st s s r s s s s s s s s s r s raae e rnns 42
2-9. Interrupt Flag ReGISIEr (IFR)ueeii ittt iia e e s e e s s s e s s s s e st s an e e s asann e s ssannnaessannnnessn 43
2-10. Interrupt Return Pointer RegiSter (IRP) ...uuuueiiiiiieiiies s ira e ss s s s s s s ann s sanneenss 43
2-11. Interrupt Set REGISIEr (ISR) «uuuuiiutiiteiiiteiie s et s r s s s et s s e s s an e aannens 44
2-12. Interrupt Service Table Pointer RegiSter (ISTP)uuuiiseiiieiiirie i raaeens 45
2-13. NMI Return Pointer Register (NRP)uu i s s s s s s s s s e s rannnaenss 45
2-14. E1 Phase Program CouNter (PCEL) ..uuuuuutireeiiteiaueerstssssssssissssansssassssassssnsssasssannssanessnnns 46
2-15. Debug Interrupt Enable Register (DIER)ttt r e e s s e e s s e e s s n e sranne e ens a7
2-16. DSP Core Number RegiSter (DNUM) . .uuiieeeiiiiteiisistesssassesssssssessssiassssssannssssannnssssannsnssss 48
2-17. Exception Flag RegiSter (EFR) ..uuueiiueiiiiiiiiie s s ss s s ss s sraa s raan s raaeaanns 49
2-18. GMPY Polynomial A-Side RegiSter (GPLY A) ...t iiiiiiteeiiaaee st s s raane s s r s asanreesaaanneesann 50
2-19. GMPY Polynomial B-Side (GPLYB) ..uuetiiiuuuteeiiuttessainssesiansssesisassssissinsssssainnnssssannnssssasnsnssss 50
2-20. Internal Exception Report Register (IERR) ..uvuuiieeiiiiiiiii s s assan e s rnns 51
2-21. Inner Loop Count REGISTEr (ILC) 1.uuuuueeiiiieeeiaiianeeeaaaaate s ssaaass et saansnessaannessaannssssanneessannnnessnn 52
2-22. Interrupt Task State ReGIStEr (ITSR) .. .uueuuruueeeiiiitteiraites s iraisse s tsaisrssaainnrssssannrressannsnssss 52
2-23. NMI/Exception Task State RegiSter (NTSR) ..uuuuiuteiiueiriiiiiieiisiirisis s sareraasssiasssanssanness 53
2-24. Reload Inner Loop Count ReIStEr (RILC) ..uuueiiietiiiiiitee it raaas e s saains e s saanne s ssannesssaanneessnn 54
2-25. Saturation Status ReGISIEr (SSR) «.uuuuuesiiiiiutieiiiie it iraire s taaanr s aaaasresssaannrsssannnnesss 54
2-26. Time Stamp Counter Register - LOW Half (TSCL)..uuuiuueiiiiiiiiiiiteiiirieisie s rseesissssiassnaesaneens 55
2-27. Time Stamp Counter Register - High Half (TSCH) ...ivviiiiiiiiiiiii i e e 55
2-28. Task State ReQIStEr (TSR) tuuuuutetiiuuteeisnnesssaiasesssastestsaassaessaassressaassnssaaaannssssaannrsssasnnnsssns 57
2-29. Floating-Point Adder Configuration Register (FADCR)uutiitiiiteiiiiiisis it raessissssnassanns e 59
2-30. Floating-Point Auxiliary Configuration Register (FAUCR)cuiiiiiiiiiiiie i rriie e er s e rnaanneeeas 61
2-31. Floating-Point Multiplier Configuration Register (FMCR).....uuiiiiiuiseiiiiieeiiiiis i sniinnssssaannsesas 63
3-1 Single-Precision Floating-Point Fieldsueiieiriiiiii i s s e raes 71
3-2. Double-Precision FIoating-Point FIeldS ... s e s r e s e e ranneeeas 72
3-3. Basic Format of a FetCh PacKetvveiiiiiiiiiiiiiiiiiiiiiiiii i e 74
3-4. Examples of the Detectability of Write Conflicts by the AssembIer.......ccveiiiiiii i raaaeeens 81
3-5. Compact INStruction Header FOIMALieieiiiiie i r e e s e e s sa e e saaanr e e saann e e saannneess 92
3-6. Layout Field in Compact Header WOrdc..ueeiiiiiteiiiitesirisesssasse s sssissssssainnssssaannnssssannsnssss 92
3-7. Expansion Field in Compact Header WOrdiieeiiiiiiiiiiirieinies i s sass s sssssnnns e ssnnes 93
3-8. P-bits Field in Compact Header WOId ... iiiiiteerrase s s ra e s s s ans s s saanr e s sannn e s ssanneeess 95
O 0 T= [T TS = o = 576
4-2. Fetch Phases Of the PIpelingciueirieeiiiii i e e e r s n e saneenas 577
4-3. Decode Phases Of the PIpeliNe ...t r e s rrane e s s r e s annnns 578
4-4. Execute Phases of the Pipelingovueeiiiii i s s ananns 579
-5, PIPEINE PRaSES oottt e 580
4-6. Pipeline Operation: One Execute Packet per Fetch Packet.......cooviiiiiiiiiiiiiii i eaniaes 580
4-7. Pipeline Phases BlOCK Diagramu s .uesesirssesisissesississssssainressaassssssasssssssaisssssssinnsssssinnnes 583
SPRUFE8B-July 2010 List of Figures 9

Copyright © 2010, Texas Instruments Incorporated

I3 TEXAS
INSTRUMENTS
www.ti.com
4-8. Single-Cycle INStrUCtION PRaSESuuiiiueiiiiiiiiii i r s s e s saneeaas 588
4-9. Single-Cycle Instruction Execution BIOCK DIiagramvessivisssriseinisiiiseiineiisississsiseaisesanneas 588
4-10. TWO-CyCle INSIIUCHION PRASES ... uutsiiiiteiiiiietssie st s aats et saaaaa et saaas e s asaanesasannressannnes 589
4-11. Single 16 x 16 Multiply Instruction Execution BIOCK Diagrami......cuvveeriueiriuiiriieiiiieninenneiainnnans 589
4-12. Store INSIUCHON PRaSES .. uuuisiiiisiiiieii i e e s s s r e e s n e e aannnns 590
4-13. Store Instruction Execution BIOCK DIiagrameeiseieeeiisiiisessiissssssaisssesiassssssssisnssssasnnsessannnes 590
4-14. Extended Multiply INStrUCtiON PRaSES .. .uuiietiiiiiii i s e s raneeaas 592
4-15. Extended Multiply Instruction Execution BIOCK Diagramccvviiieiiiiiiiieeiiiinesaniiansssnannnseanannss 592
4-16. Load INSIIUCHION PRASES t1uuuiistiiistirissiiistiiseiiterasstrssssase et sassesaanerassssistssassranneraisesinnsins 593
4-17. Load Instruction EXecution BIOCK DIagramvseisesirusssinssiisessistssnsssseiaisssansssassesansiannssannsins 593
4-18. Branch INSIrUCHON PhaSES ..uuuseiiiiiiseiiiire e s s ra e naneenas 594
4-19. Branch Instruction Execution BIOCK Diagrameuueseeeeiriiiseiiainnesisissssisaissssisainnsessaannssssannnes 595
4-20. Two-Cycle DP INSIrUCHON PRASES 1.uiiuuteiieiiiaiiiitinieiriessras s s s s s e s s s sann e saaeaaannaans 596
4-21. Four-Cycle INStrUCHION PRaSEsuuiiiiiiiiiie i r st r st e s s aaare e s ra e e s saann e s aannneeanannns 597
4-22. INTDP INSIIUCHON PRASES uutiuutiiisterissiiistisseiineiisssnisseriseisistsasssanesassssiansrassiaineraiesinnsins 598
4-23. DP Compare INStrUCtON PhaSEsSuueiiueiiiiiiiiiiiiiie it sa s aan e raneeaas 598
4-24. ADDDP/SUBDP INStrUCION PRASES . vuuustiissiiseiineiasssnisssrassssisssssssisesassssaasssassssnsssasesansssas 599
4-25. MPYI] INStrUCON PhaSeS . uuuiiisiiiisiiiiieiiiiiir i e a s ra e aanenaas 599
4-26. MPYID INSIrUCHON PRaSES . uuiuutiisiiiintiiatire it i sa e s s s s s s s s s san s sa s san e saneaanneras 600
4-27. MPYDP INStrUCHON PRaSES .uuusiiteiistiiite it s s ra st raa e e aaneeaas 600
4-28. MPYSPDP INStruCtion PhaSES .uuiiuiiiisiiiistiiiiiiiiiiiiissisi i it rasesanssnas 601
4-29. MPYSP2DP INStIUCHON PRaSES . s uutistiietirteiiterastssisre s sasssareas s s sasssannesaisssannsras 601
4-30. Pipeline Operation: Fetch Packets With Different Numbers of Execute Packets.........cooeeviiiiiiiiiininnns 622
4-31. Multicycle NOP in an EXECULE PACKEL.uiiiueeiiiiiiiiiiiiiieiriise i ss e s ssann e asannes 623
4-32. Branching and MUIICYCIE NOPSuuiiiueiiit i s s a e ra e e saneeaas 624
4-33. Pipeline Phases Used DUriNg MEMOIY ACCESSES ...uuuurrrrrunreerraantaetraanseessaansesssaannssssannnsessannnes 624
4-34. Program and Data Memory StallSeeeiiiiieiiiii s s s 625
o I 101 1= 0T 01 ARST=T 1o I Lo 630
5-2. Interrupt Service FEtCN PacCKet ...ttt et e st e s rraan e s s s n e s aannr e e aaannaeeas 631
5-3. Interrupt Service Table With Branch to Additional Interrupt Service Code Located Outside the IST......... 632
5-4. Nonreset Interrupt Detection and Processing: Pipeline Operationcvvviiiieiiiiieiiiiriinnneiaaes 641
5-5. Return from Interrupt Execution and Processing: Pipeline Operationuveveeeiiiiiieriiinneriaainness 642
5-6. CPU Nonmaskable Interrupt Detection and Processing: Pipeline Operationvviveiiiiiineiiniinnnenn. 644
5-7. CPU Return from Nonmaskable Interrupt Execution and Processing: Pipeline Operation..................... 645
5-8. RESET Interrupt Detection and Processing: Pipeline Operationo.veeveierierenerieineaeraeaeaesaeanss 647
6-1. Interrupt Service Table With Branch to Additional Exception Service Code Located Outside the IST 656
6-2. External Exception (EXCEP) Detection and Processing: Pipeline Operation.........cevvveiviniiinrinnneinnes 660
6-3. Return from Exception Processing: Pipeline OPeration.c.vveeeeeiiiiineriaiiieesaainresraannsesiaannneess 661
6-4. NMI Exception Detection and Processing: Pipeline Operationcivviiesiiriiieeiniieiiiisesainnenss 663
6-5. Double Exception Detection and Processing: Pipeline Operation........ccvvviivieiiiiieiniiirinneinaes 664
7-1. Software Pipelined EXECULION FIOWuiiiseiieiiiiir i s s r e aaes 668
7-2. General Prolog, Kernel, and Epilog EXecution Patternc.evuviiiiiiiiiiiii i nsiinesssnnnnes 681
7-3. Single Kernel Stage EXECULION Patternueiiueirietiiieiiieeiieris i r s saassass s s sansaanes 681
7-4. Early-EXit EXECULION Patlerncoii ittt et e s s e s s s e e s saann e s ss i n e e ssannne s saannnenss 682
7-5. Single Loop Iteration EXECULION PatterN ..u....eseiiiieieiiiieesisiise s sssinressaasressaansessaannnesss 682
7-6. Reload EXECULION Paltlerm . .u sttt ss s s st s e s s a s s s e s tae s san s s aannsraneannns 683
7-7. Reload Early-EXit EXECULION PAEIM ...iieeiiiiiiiteiraiatesssaaase s ssaanae st saannne s ssannsssaannressaannnanssn 683
7-8. Instruction FIow USING Rel0Adiuuueeiiiiiiiiii i s s e s s rannee e 689
7-9. Instruction Flow for strepy() Of NUIL SENG uvevueeiiiiiin i s e rae s 692
10 List of Figures SPRUFE8B-July 2010

Copyright © 2010, Texas Instruments Incorporated

I3 TEXAS

INSTRUMENTS

www.ti.com
C-1. 1 0r 2 Sources INStrUCION FOMMIAL ... uueeeeiseeeesseaeeeessaanneessaanneessaanneesssannnesssaannnesssannnessnnnnnees 724
C-2. Extended .D Unit 1 or 2 Sources INStruCtion FOrMAat........eeiiiiiie i rannnaeeas 724
C-3. ADDAB/ADDAH/ADDAW Long-Immediate OperationSuseiveiusssiisissnssiiiinnssssiinnressannnnesiannnesss 724
C-4. L0oad/Store BasSiC OPEratiONS «.uuuuessuseiutessesssssrsstass s saats s ssassssisssatstanesansssansssnneianes 724
C-5. Load/Store Long-Immediate OPEratioNSueieseesisssrseirssisisssisseiasserassssisrsrass e asssanrsraeianns 724
C-6. Load/Store Doubleword INStruCtioN FOIMALuuiueesiiiiseiriies i issinessssinnrssssannresssannnnesss 724
C-7. Load/Store Nonaligned Doubleword INStruction FOrMAtcvviieeeiiiiieeisiaieesessnrrereannnnessannnneess 724
C-8. DOff4 INSIrUCHION FOIMAL ...settiii et it e et e e e s s ae e s sr e e s saa s e s ss s e e s sann e e s sannnessaannnesss 725
C-9. DOffADW INSEIUCHION FOIMAL ... uuetiiiseeeisiiiaeeiss e sr s et s aae st saiaae st ss e e s s s an e s s s sann s s ssannnnnsss 725
C-10. Dind INStIUCHION FOMMAL «vteteesseeeeesseasneessaaaneeessaanneessaanneessaannnessaannnessasnneessannnnessannnnnsss 726
C-11. DINADW INSErUCHION FOMMAL ... ueeeiiiaeeeisa et e ss s aatee s s s aae e s sa e e s saaan e s ssaane s saaanneessannnnessaannnesss 727
(Ot I I 1 Tl [TS £ B od 1T o 0 0 T 727
C-13. DINCDW INStrUCHON FOIMAL ... ueeetsieieeessesaeeesssaaeeessaanneessaannnessaannnessaaanneessaannnessannnnessannnnnsss 728
(O To =T o | £ 1o 1o o T o T o - 728
C-15. DdeCDW INSIIUCHION FOMMAL 1. uuuetisseseissseesssanesssaates s saasse st ssasae et ssaaanssssannesssannnnsssannnnnsss 729
C-16. DSt INSIrUCHION FOMMAL «veeeetseeneeesssaaneessssaneeesssanneessannneessaannnessaannnessasnnneessannnnesssnnnnnsss 729
C-17. DX20P INSHUCHON FOIMMAL ... aeeei ittt it rr e et e et e e s rsaae e s sa e e s saann e s ssann e e saannnaessannnnnsss 729
C-18. DX5 INSIIUCTION FOMMIAL . uttttisaseissiaessssasesssase s ssaasee s saaaae et saaaan st asaan s s ssaanressannnnessannnnnsss 730
C-19. DX5P INSIIUCHON FOMMAL. 1. utt sttt ate s r e e e s e s e e s e s e e s s e s sa e e sa e s san s s sn e sanneannes 730
C-20. DXL INSIIUCTION FOMMAL . .eteiiieeeise e ieee e st e ss e e e e s s aee e s ssaaae et saaan e s saann e s ssan s e e ssannnnessannnesss 730
L@ T I o I 1 1 (1 Tox 10 TN o 10 - 731
D-1. 1 0r 2 Sources INStrUCHON FOMMAL ...ueeiieeeeseeeeees s aanee s ssaneeessannessaasnnnessasnnnessaannneessannnnersnn 735
D-2. Unary INSIIUCION FOMMIAL. ... eeee i ete it e e st e e s s e e s ss e e s saa s e s s aan e e s ssannn s ssannnaessannnnssn 735
D-3. 1 or 2 Sources, Nonconditional INStruCtioN FOrMat. . ..uiuiiiiiieiiiirisiiireisressissssatsressssrsnssresssssrnns 735
[S e B | =) o £ o] o T o T o - P 736
[R T IC T [1S3 (T o o] 4 - | N 736
D-6. Ltbd INStrUCHON FOIMAL. .. sseesiiseeeieseee st e e s s aae e s ss e e s ss s ae s ssaan e s s s s ann e s s s anan e s sannnnsss 737
[R R 2o [1] 1 8o o o 4 g = | 737
D-8. LX5 INSIIUCLION FOMMAL ..eeeiisiieeeaaiete e ss e e e s saaaee s ssaaa e s saann e s saann e e s s sannne s s sannnasssannnnnsss 738
D-9 (5T T [TS £ 14 1T o 0 T 738
D-10. LX1C INSIrUCHON FOMMAL 1. uueeesseeee e seeseeesseanee e ssaanneessaannnessaannnessaasnnnessasnnnesssannnnnssannnnnsss 739
[O I 1 1] 10T o o = 739
E-1. Extended M-Unit with COmpOoUNd OPerationNSeeseiriuteesiiinesirinnesiraieressainnresssannrsessaannnesss 743
E-2. Extended .M-Unit Unary INStruction FOIMAtoueeiiueiiieiiiiieiiieiiie it siar s anness 743
E-3. Extended .M Unit 1 or 2 Sources, Nonconditional INStruction FOrmMatvvviviiiriiiiiiiiiiirrrrrennnannanss 743
S Y G 1 =1 T 1o o T o T = 743
L T Y e 3 1) o 1 o TN o g = 744
F-1. 1 0r 2 Sources INStrUCHION FOMMAL ...t e e s e et s a e e s s saan e s s saan e e s aaanneesrannnnensnn 747
F-2. ADDDP/ADDSP and SUBDP/SUBSP INStruCtion FOrMAL ...uvviiueseiiiiiinesiniinnneissinnessninnsssssannnnesss 747
F-3. ADDK INStrUCHON FOMMAL 11 uuueeetteeeesseseeessaaneeessaannnessaannnessaannnessaanneessaannnesssannnnnssannnnnsss 747
F-4. ADDKPC INStUCHON FOIMMAL. ...ttt e eraiate e rs e st sa e et saaaa e s saann e e s saann e e s saannnessaannnnnssn 748
F-5. Extended .S Unit 1 or 2 Sources INStrUCtioN FOMMAt ... uuuseiiiiieesiiiiees s ssaiaresssaaansessannneesss 748
F-6. Branch Using a Displacement INStruCtioN FOMMALuueiuiiiisririeisieeiiesinerinsssiessaasianeranessinnss 748
F-7. Branch Using a Register INStruCtion FOIMALueeiieiiiiee e ra e e raa e s ssanr e s srannne s raannaess 748
F-8. Branch Using a Pointer INStruCtion FOIMALvvuuursiiiiineiiiiees i issierssssisrssssannrssssannnnesss 748
F-O. BDEC/BPOS INStrUCHON FOMIAL «.uuueeesisseeeessaneeessaasnnesssasnnessaasnneesaasnnnesssannneessaannnnsssnnnnnsss 748
F-10. Branch Using a Displacement with NOP INStruction FOrmMat.......c.uviiiiieiiiiiiiiiiiii s eesanneens 748
F-11. Branch Using a Register with NOP INStruCtion FOrMALvviiiiuueeiiiiieiiiiieissiirsssniinrssssannnness 748
F-12. Call Nonconditional, Immediate with Implied NOP 5 Instruction FOrmatcccevviiiirerrsinneerrnnnnnenss 749

SPRUFE8B-July 2010 List of Figures 11

Copyright © 2010, Texas Instruments Incorporated

I3 TEXAS
INSTRUMENTS
www.ti.com
F-13. Move Constant INStrUCHION FOIMAL. .. .cuieetieieeessaanreeesaanene s saannnessaannnessaasnnressaannnnesaannnnnsns 749
F-14. Extended .S Unit 1 or 2 Sources, Nonconditional INStruction FOrmat.......uevviiiirrriiiniiiiierrernnnnennss 749
F-15. UNary INSIrUCHION FOMMIAt. ... useesiiieeeeisatsessaatee s ssaaase s ssaaae s saaaae st ssaan e s s san s e st sannnnessannnnnsss 749
L I T 1= (o @ o1 U1) 0 749
F-17. SDS7 INSIIUCHION FOMMIAL. ...ttt et et r e e e s e e e s s aae et saaan e s saa s e e s saann e e s saannnasssannnnnssn 750
LR TR ST 01U o 1 1 1 Tox 10 TN o g0 - 750
F-19. SCS10 INStrUCHON FOMMAL 1 1uuueeeeseeeeesesneeessaanneessaanneessaannnessaannneesaasnnnessaannnesssannnnnssannnnnsss 750
F-20. SDS7C INSIUCHION FOMMAL .. uueeeeii et e it e e et e et s ae e s ssaae e s saa s e s saann e e s saannn e s ssannnasssannnnsss 751
F-21. SbUu8C INStrUCTION FOIMAL 1. uuueeesiisieeeiii it e s et s s e s sra s e s ss s an s s s s s aann e s s sannn e e s sannnesss 751
F-22. S3 INStrUCHON FOMMIAt. .ttt tieesteeseesee st e e ssaanee e ssaannnessaannnessaannnessaannnessaannnesssannnnnssannnnnsss 751
G T ST T [1S3 (BTt o) o 0] 0T N 752
F-24. SMVK8 INSIIUCHION FOMMIAt. 1. uuutetiseeeissetetssate st saaaee s ss e et ssaaa e s saaan e s s s annn e s saannnnsssannnnnsss 752
F-25. SShS INStrUCTON FOMMIAt. ..ttt s se e s e e s e anee e ssaaanee s saannne s saannnessaannnessaannnensaannnnnssannnnnsss 753
F-26. S2Sh INSIIUCTION FOMMIAL. ...ttt e e ra e e s s are et saaaae et saa s e s saann e e s saann e e s saannnasssannnnnssn 753
F-27. SC5 INSIIUCHION FOMMAL 4 auisaeet it sss et r st e e s s e et ss e e s ss e e s s s an e e s s s aann e st sannnnessannnnsss 754
F-28. S2eXt INStIUCHON FOMMAL .. . ueeeeiseeeessee e e se s e e s saaanee s s sannnnessaannesssaannnessasnnneessannnneseannnnensnn 754
F-29. SX20P INSIUCHON FOIMMAL 41 uuuatiuteiiseeristesas et ra s s s e s a s s s e s a s s s e taar e ran e e snns 755
F-30. SX5 INSIIUCHION FOMMIAL 4 auiiseesiiseeesss e s s st e et s s aae et ss e e s saaaa e s saaaan e s s s an s e s s sannnessannnnsss 755
F-31. SXL INSIrUCHON FOMMIAL «eeeesseseeessesaneeessaaneee s saannnesssannnessaaannnesaaannnessaannnnessannnnnssannnnnsss 756
F-32. SX1D INSIIUCTION FOMMIAL. e eetei it it e e e e e e e s e e e s saasae et saaa s e s sa s e e s ssann e e s saannnasssannnnnssn 756
G-1. LSDMVLO INStrUCHION FOMMAL ... uustiiseeeiiiaeesssiaere s aatse s saasaes s ssasae st asaan s s ssann s s ssannnnsssannnnnsss 759
G-2. LSDMVIT INSIIUCION FOMMIAL .. .uteeisiieeessesseeesssanee e ssaaneee s saannn e s saannnessaannnessasnneessannnnessannnnnsss 759
LT T S B)t Ko [1S3 (U o T o - | 760
G-4. LSDXL INSIUCHON FOIMAL .. useseiiiiaeetisiiaee s iates s ee e s sa e et sa e st ss e e s s saan e s s sannnessannnnnsss 761
H-1. DINT and RINT, SWE and SWENR INStruction FOIMatvveeeuiiiirrreeieesiiirreseesrennnnnsssrrersennnnnnnns 765
H-2. IDLE and NOP INStrUCHON FOMMALciiieiiiiiiiteeaiate e ss e e s saaase s ssaann s s ssann e s saanneessannnaensnn 765
H-3. Loop Buffer, Nonconditional INStruction FOrMALeuiiiuineiiiieiiiiii i saannaenss 765
H-4. Loop Buffer INStruCtioN FOMMAL.....cuueeiitiiieiie i s r e s s s r s s r e ae s snns 765
[ST U] o I [1S3 (U0 o] 3= 765
H-6. USPIdr INSrUCHION FOMMAL 1. . uesei i it ssa e s ss e et s s e et ss s e s ssaan e s s s s aann e s s sannn e s s sannnnnsss 766
H-7. USPK INSEIUCHION FOMMAE. .t iuuteiateiseisatessesee s e e s s s s s e e s e s s e s s s s s a e ta e s s na s s n s s aeananns 766
H-8. USPM INSrUCHON FOIMAL eeeeiieee it e te e e s e e s ss e ase s sa e n e s s aaann e s ssannn s s sannnnessannnessn 766
L S TR U1 T o N T3 £ BTt o o 0 4= 767
12 List of Figures SPRUFE8B-July 2010

Copyright © 2010, Texas Instruments Incorporated

I3 TEXAS
INSTRUMENTS
www.ti.com
List of Tables
2-1. 40-Bit/B4-Bit REQISIEr PaUIS 1uuuuiistirseiiitiisrie i s 28
2-2. Functional Units and Operations Performedvueeiriiiiesiiiesiiiis s ssainnr s ssinnnssssannnnsnss 29
P2 T /T To 01 o R g o 01T T 31
2 /[To 0 o TR S 11 g 0 01T T 32
2-5. Modulo Arithmetic fOr FIEld GF(23) «.uuuiieiitie it e ettt st e s e e e s e e e aasaeaeaasaeaneansanannanens 33
P22 T O o g1 10 =0 £) 1= £ 34
2-7. Addressing Mode Register (AMR) Field DeSCHPLONSueiiiiiiiieiiiiieeraiie e saaaire s ananre e arannneeens 36
2-8. BIOCK Size CalCUlatioNS ... uutiissiiiteiieisiaiiis st 37
2-9. Control Status Register (CSR) Field DeSCHPLONS . .uuiueeiiuiirintiriieiiieeiitesire i sareraesainns 38
2-10. Galois Field Polynomial Generator Function Register (GFPGFR) Field Descriptions.........ovvveeveiiiinnnnn. 40
2-11. Interrupt Clear Register (ICR) Field DeSCIPLONS . .uuueeiiieteeisisnnesiainsnssssiissssasiinessssannnesssannnessas 41
2-12. Interrupt Enable Register (IER) Field DESCHPONS .uuiuueeiietirstirseiiieeritesirernssisiesasssansraneaaanns 42
2-13. Interrupt Flag Register (IFR) Field DeSCHPIONS uuetetiiieteetaaaeeesaaaneessaaanre s asaanreessannnaessaannnesss 43
2-14. Interrupt Set Register (ISR) Field DeSCIPlONS .. uuuuueteiriitresriires s issinesssainrsssaannressaannrnssss 44
2-15. Interrupt Service Table Pointer Register (ISTP) Field DeSCHPONS ...vvueiiiiiiiiieiiiniris i raeeenees 45
2-16. Control Register File EXIENSIONS ...uuueeiiiieeraattessaansessaansesssaanneesaaanneesaaannsessaannneessannsnssss 46
2-17. Debug Interrupt Enable Register (DIER) Field DeSCHPONS .uvviiiueieiiiiiieeiiiiinrsirniinnsessinnrsessannnnenss 47
2-18. Exception Flag Register (EFR) Field DeSCrIPtONS .uuvueiiiuiiiiiiiiiieiiieris i rissssies s snnnssane e 49
2-19. Internal Exception Report Register (IERR) Field DeSCPtiONSuieiiiiiiieiiiiieeirainreersannnresrannneeens 51
2-20. Interrupt Task State Register (ITSR) Field DeSCIPLONS +.uuuutetiiiueteiiiiinesisiinrsissisressainnnssrsaanrneess 52
2-21. NMI/Exception Task State Register (NTSR) Field DeSCriptioNS.....cuevveiriuiiriiiiieiiieisrirernneaniness 53
2-22. Saturation Status Register Field DeSCPLIONS 1uutvuseiisetristirisririseiaissrarirrasisr s rareaessanns 54
2-23. Task State Register (TSR) Field DeSCIPUONS +.uuuuereiiiietreiristnesiiitnessaisessssiisnssssaaneessaannesias 57
2-24. Control Register File Extensions for Floating-Point Operationsvvveeiviiiiiiiiiiiiri i ieennes 58
2-25. Floating-Point Adder Configuration Register (FADCR) Field DeSCriptionsccevviiiiieieiiiiieeriiinneeanns 59
2-26. Floating-Point Auxiliary Configuration Register (FAUCR) Field DeSCriptionscueviviiierriirinneseirinnnness 61
2-27. Floating-Point Multiplier Configuration Register (FMCR) Field DeSCriptionscivvvivieiiiiisiiireinnnininnss 63
3-1. Instruction Operation and EXeCUtion NOTAtIONSueteiiiitei i ra e ar e s ra e srannne s rannneeess 66
3-2. Instruction Syntax and OPCOde NOLALIONS . ..uueeeiruuuererriitresrranres s isainrssaaisrsssaaanrssssannsnssss 68
3-3. |EEE Floating-Point NOTALIONS ... uutiiseiiteiieesits e ssas s ss s ssasssa s st st e s s asessn s sannsaanness 70
3-4. Special SiNgle-PrecCiSioN ValUBSuuiueiiisiieiie i s ra s aanes 71
3-5. Hexadecimal and Decimal Representation for Selected Single-Precision Values.........cccvvviiiiiiiiiinnnnnn. 71
3-6. Special DoUDIE-PreCiSION ValUBSuuueiieeiistisite st sr s s st s s s r s s saeeaannens 72
3-7. Hexadecimal and Decimal Representation for Selected Double-Precision Values........c.vvveiviniiiineinnnnn. 72
3-8. Delay Slot and Functional Unit LAtENCY ..uuuueeeiiiieeeeiniitsessaassesisassesisaisnssssainsssssainnnssssannrsssss 73
3-9. Registers That Can Be Tested by Conditional Operationscvvveeivieriiisriteriiriiisineaaainns 77
3-10. Indirect Address Generation for LOAd/STOreueiuseiissirisiirisriiie i aanns 90
3-11. Address Generator Options fOr LOAA/STOIE ...ueuisiueeeiiiiitseiriitseiriites s sasisessssaanrssssaannressas 90
3-12. CPU FetCh PaCKel TYPES utiuutiunteistersttsat et rasss st s tra s saasssaar e saassaaa s saassaresanessanns 91
3-13. Layout Field Description in Compact Instruction Packet Headercoviiiiiiiiiiiiiii e eas 92
3-14. Expansion Field Description in Compact Instruction Packet Header........ccvvviiiiiiiiiiiiiiiiiiiiniineens 93
3-15. LD/ST Data Size SelECON . uuuuettteiiisiatere et s s s s s s et sa e s aa s tanr e ranearnns 94
3-16. P-bits Field Description in Compact Instruction Packet Header.........oviiiiiiiiiiiiiiiiiriie e aaeeeees 95
3-17. Available CompPAact INSIIUCHIONS wuuuueeeiiiiieeissiite st aaase s tr e s tsaaae s ssan s s s saannnesssanrnnsss 96
3-18. Relationships Between Operands, Operand Size, Functional Units, and Opfields for Example Instruction
(N) 100
3-19. Program Counter Values for Branch Using a Displacement Examplec.ccvviiiiiiiiiiiiiiniiiieiieeens 152
SPRUFE8B-July 2010 List of Tables 13

Copyright © 2010, Texas Instruments Incorporated

I3 TEXAS
INSTRUMENTS
www.ti.com
3-20. Program Counter Values for Branch Using a Register EXampleccoviiiiiiiiiiiiiiiiiinieeinaes 154
3-21. Program Counter Values for B IRP INStruction EXampleooiieiiiiiiiiiii i reiinne s anaaeees 156
3-22. Program Counter Values for B NRP Instruction EXamplecoviiiueiiiiiiiiiiiii i snaaee e 158
3-23. Data Types Supported by LDB(U) INSIIUCHON ... u ettt iier s s ssessansssinnsrnasannes 279
3-24. Data Types Supported by LDB(U) Instruction (15-Bit OffSet)uueeiiiiiiii i naeeee 282
3-25. Data Types Supported by LDH(U) INSIFUCHION ...uuuuuesiiiiissiiiiissssiissessssisessssinnsssssannnssssannnnesss 288
3-26. Data Types Supported by LDH(U) Instruction (15-Bit OffSEt)cvueeeiiiiineiiiiierssiireernnnnnresnnnnnness 290
3-27. Register Addresses for Accessing the Control REQISLEISuviiiieeiiiiii i raanaaeeas 378
3-28. Field Allocation in StG/CYC Fild .uuunuueeeiiiiie i r e s s s st s s aaannees 482
3-29. Bit Allocations to Stage and Cycle in Stg/CYC Fieldvueiiieeiiiiiii i 482
4-1. Operations Occurring During Pipeling PhaSesiieiiiiiiiiiiiii i rr e sa e e aanns 581
4-2. Execution Stage Length Description for Each Instruction Type - Part Aeviiiiiiiiiiiiiiiiiiinnaes 585
4-3. Execution Stage Length Description for Each Instruction Type - Part Boovvviiiiiiiiiiiiiiiiinineens 586
4-4. Execution Stage Length Description for Each Instruction Type - Part Ceviiiiiiiiiiiiiiiiiiiieeniaees 586
4-5. Execution Stage Length Description for Each Instruction Type - Part Dc.uvviiiiiiiiiiiiiiiniiienninees 587
4-6. Single-Cycle INStruCtiON EXECULION . .uuuuuiietsiseiiitsissssiteraasssiatsssssssesasssans s sassesaaessanssanssaas 588
4-7. Multiply INSTFUCHION EXECULION ... uuesiiiiieeiiae e e et e ss e e et saaase e s saaann e s ssann e s saannessaannnesaannnns 589
4-8. Store INStrUCHON EXECULION «.uuuueeseiiittetiiite i e s ss it e s s e s s s e s sa s s e s sa s e s asann e s aaannnes 590
4-9. Extended Multiply INStruCtioN EXECULION ...uuuttiuseiiieeiiesite it s s e s s s s ss e aan e saneeans 592
4-10. Load INSIIUCHION EXE@CULION. 1. eteetsateetaa e e s s ae e s ssan s e s ssann e s s saansa s s saanna et saannnessannnnnessannnes 593
4-11. Branch INStrUCHION EXECULION ... uueetistetissaeessaaeesss s e s ss e e ss s se et saanse et saannnessaannnssssannnes 594
4-12. Two-Cycle DP INStrUCtON EXECULION +.uuueiisteiseisississssatesaessassssassssesssssansssansesaasssinrsannssns 596
4-13. Four-Cycle INStrUuCtION EXECULIONueetseiiiiieeisaaieesasaaas e s ssaanse s ssaanne st saannnsssaannnsssaannnsssnannnes 597
4-14. INTDP INSIrUCLION EXECULION uuuuutetisatesisssesssassessssinsesssansesssaansssssanssssssasnnnsssssnnnsssssnnnes 598
4-15. DP Compare INStrUCtiON EXECULION .. u sttt isiesirsesate s ss s sassra e sa s s s s saas s saaesanesaneeaas 598
4-16. ADDDP/SUBDP INStruCtion EXECULION .uuuussisseiiseiassssssesseisisssssssaasesassssansssasssannesassesannssns 599
4-17. MPY] INSIrUCHON EXECULION 1 uuuuattetisttetsasaeesssiaee st s s ss s e s s s s s e s saaaa s st ssanan e s asannssssannnns 599
4-18. MPYID INSIrUCHION EXECULION 11 uuttistesssisssssatetaeesass s sas s sas s s s ssaassaan s s e s san s s sa s san s sanneaannssas 600
4-19. MPYDP INStrUCHION EXE@CULION .. uutettiaeeisaiaee e s aate e ssaaas s e s saaase e s saaann e s saannnessaannessaannnessannnes 600
4-20. MPYSPDP INStrUCHION EXE@CULION 4 tutuusteeissssessssesssssnesssassssssanssssssaassnsssssnnnssssssnnsssssnnnns 601
4-21. MPYSP2DP INStrUCHON EXECULION 1. vt stisuasisaseitesssssasssasssn s saasssasnesaasssanrssasssanssaessannssns 601
4-22. Single-Cycle .S-Unit INStruCtion CONSTIAINTS. .. uuuseiiseerissiiisrriseisisierire i ranreaeaannsras 602
4-23. DP Compare .S-Unit INStruction CONSIIAINTS .. uueeiiiueeeiisiinneesriisssssiaissssiasssssssiinnssssainnressannnes 603
4-24. 2-Cycle DP .S-Unit INStruction CONSIIAINTS +.uvuuuseiieeiinserisserneisissssas s sasessanrssisssannssasesanessas 604
4-25. ADDSP/SUBSP .S-Unit INStruction CONSIIAINTS ... uuussissssiisseriseisisssrisssisesaissrassssassasinsiainssanneias 604
4-26. ADDDP/SUBDP .S-Unit INStruction CONSIIAINTS +.uuuuueesissisnssrsinsssisanssssssaisssssssisnssssinnnssssannnes 605
4-27. Branch .S-Unit INStruCtion CONSIIAINTS . .uuuuutiseiieeiisterisserias s s e s sannsrasssanseras 605
4-28. 16 x 16 Multiply .M-Unit INStrucCtion CONSIIAINTSuuueeeiiiieeeaaiateereaaares s saannesssaannssanannrssaaannnes 606
4-29. 4-Cycle .M-Unit INStrucCtion CONSIFAINTS . .uuuiisseeiisiaeeessiinressaiassesraassssisassesasassnssssaannressannnes 607
4-30. MPYI .M-Unit INStruCtion CONSIIAINTS .. uuusuutsiseinasirse st srse st sar s s sanesias 608
4-31. MPYID .M-Unit INStruCtioN CONSIrAINTS ... uiieteeiiaiieesaaiansessaaanre e ssaanse st saansasssaanneesaaannnsssannnnes 609
4-32. MPYDP .M-Unit INStruCtioN CONStraINTS .. uuuuissessssiueeessisnrsssassssesiaasssssisaissssisaisnssssaannressannnns 610
4-33. MPYSP .M-Unit INStruCtion CONSIIAINTS .. uuuuussiseinssissesnsesasessasts s s s sansssasresanssainrsanesias 611
4-34. MPYSPDP .M-Unit INStruction CONSIIAINTS +.uvuuseiiuseiassessneriseisissirss i s aaneraisesannsias 612
4-35. MPYSP2DP .M-Unit INStruction CONSIraINTS. .. uuuesisiseesissinnessainsesssanssesssassssssssissssasannnssssannnes 613
4-36. Single-Cycle .L-Unit INStruCtion CONSIIAINTS .. uuueiiueeiistisisseriseisissrsssane i s e saeesannsras 614
4-37. 4-Cycle .L-Unit INStrUCtION CONSIIAINTS . .uueiiteeiaiieeesasaaeee s saaanse s ssaaase st saannasssaannnssaaannnsssaannnes 615
4-38. INTDP .L-Unit INStruCtion CONSIIAINTS . uuussissseesssaessssianssssassssssansssessasnssssasasnnssssasnnrsssannnes 616
4-39. ADDDP/SUBDP .L-Unit INStruction CONSIIAINTS ... uuuuesiusesiateiiseisisnssissssseiasssansssassssinsisinrsassias 617
14 List of Tables SPRUFE8B-July 2010

Copyright © 2010, Texas Instruments Incorporated

I3 TEXAS

INSTRUMENTS

www.ti.com
4-40. Load .D-Unit INStruCtiON CONSIIAINTS. .. uusiiettrse it iaatesiate s srassare e s s s saassaaaeaainesaneeras 618
4-41. Store .D-Unit INStruCtion CONSIIAINTS +.uuusisssssseiiseesiseirs e s siar s sase s e s rareaaannsans 619
4-42. Single-Cycle .D-Unit INStruction CONSIIAINTS . .uuuesiiiieeeinsiineerrirasrsiiaisssssiasssssasainnsssaaannressannnes 620
4-43. LDDW Instruction With Long Write INStruction CONSLIAINTS ...vviueirieiiiiriiieiiie i risiaeisiersaeeas 620
4-44. Program Memory Accesses Versus Data LOad ACCESSES ..uuuriirriereririanrrriiaatrsssaanrssaaannressaannnes 625
o O 101 0= 1] o 70 111 629
oL 10117 (0T 01 A @] o] B (T L] 1= £ 634
5-3. TSR Field Behavior When an INterrupt iS TAKENueeiiiie i i saiaee s inr e s s nanr e e asnnnaeeas 643
5-4. TSR Field Behavior When an NMI INterrupt iS Taken...ov.eeeiiiiiiesiiiiiiiiis i s rsanneeeas 646
6-1. Exception-Related CONtrol REGISIEIS .. .uuiut ettt i sareranes 655
6-2. NTSR Field Behavior When an EXCeption iS TaKeN.....uuiiieeiisiiririiiseiniiisinerasiasssiassasenanes 658
6-3. TSR Field Behavior When an Exception is Taken (EXC = 0)..uiiuuueeiiiiiuneiiiiinnreriiinrsssainsesiannnnenss 661
7-1. SPLOOP INStruction FIOW fOr @Nndueeiieeiiseiiiirie st s e s ss s s n s s s s s s sanaeaanes 674
7-2. SPLOOPW INSIrUCHION FIOW fOF 1uuuuiisiiiseiieisie s s e s r s s s s r e s s na e rneaaaes 675
7-3. Software Pipeline Instruction Flow Using the Loop BUffer.......vvviiiiiiiiiiiiii i naee 677
7-4. SPLOOPD MIinimum LOOP IHEFatiONS 1.uuueeissisatisasiatesassesias s rss s s ssasssanassanessan s ssassannsaanes 685
7-5. SPLOORP Instruction Flow for First Three CyCleS Of .uvuuiiiieiiiiiiiiiiiiiiiniini s 694
7-6. SPLOOP INSrUCHION FIOW TOF uuuiuiiiissiiiseiiiiiiiiisissi i ras s s s rassannns 696
A-1. Instruction Compatibility Between C62x, C64x, C64x+, C67x, C67x+, and C674X DSPScvvvvvvnnnnnns 709
B-1. Instruction to Functional Unit Mappingeeeeoooeeeeiinaesiraanee s saaase s saannnesssaannressaannrassaannnanssns 715
C-1. Instructions Executing in the .D Functional Unitcoviiiiniiiiiiiiiii i s rannnenas 722
C-2. .D Unit Opcode Map Symbol DefinitioNS.eueueereeeiieeiiieeisie it sar i sransanaes 722
C-3. Address Generator Options fOr LOAA/SIOrE. .. .uuuiissiiseiiiseiii i i s s aaaes 723
D-1. Instructions Executing in the .L FUNCiONal UNit......veiiiiiieiiiii i nsiies s s s s ssnnnneeneas 734
D-2. .L Unit Opcode Map Symbol DefinitioNS ...uvuueirseiieeiiinie i ranns 735
E-1. Instructions Executing in the .M Functional Unit.........oooeiiiiiiii i rrnr e e e rnnneee s 742
E-2 .M Unit Opcode Map Symbol DefiNitioNSeeiiiiireiiiiiii i s r s s s anneenas 743
F-1. Instructions Executing in the .S FUNCtional UNitoieeiiiiiiiiiii i i s e s aes 746
F-2. .S Unit Opcode Map Symbol DefinitioNSuvseivseiieeiiinirisi i rans 747
G-1. D, .L, and .S Units Opcode Map Symbol DefinitioNsovuueeiiiiieeiiiii i s sanneenas 758
H-1. Instructions Executing With No Unit SPecCifiedvieiiieiiiiiiiii i 764
H-2. No Unit Specified Instructions Opcode Map Symbol Definitionsoevvvieiiiiiiiiiiiineae 764
I-1. DocumMeENt REVISION HISTOMY 1. uuuesiiiuteiisiatsesss e s ssaste s ssasae s ssa e e s s s aa e s s s saan s s ssannaessannnnenss 769

SPRUFE8B-July 2010 List of Tables 15

Copyright © 2010, Texas Instruments Incorporated

16 List of Tables SPRUFE8B-July 2010

Copyright © 2010, Texas Instruments Incorporated

I3 TEXAS
INSTRUMENTS

Preface
SPRUFE8B-July 2010

Read This First

About This Manual

The TMS320C674x™ DSP is the new generation floating-point DSP that combines the TMS320C67x+™
DSP and the TMS320C64x+™ DSP instruction set architectures into one core. This document describes
the CPU architecture, pipeline, instruction set, and interrupts of the C674x™ DSP.

Notational Conventions

This document uses the following conventions.

» Hexadecimal numbers are shown with the suffix h. For example, the following number is 40
hexadecimal (decimal 64): 40h.

Related Documentation From Texas Instruments

The following documents describe the C6000 devices and related support tools. Copies of these
documents are available on the Internet at www.ti.com. Tip: Enter the literature number in the search box
provided at www.ti.com.

The current documentation that describes the C6000 devices, related peripherals, and other technical
collateral, is available in the C6000 DSP product folder at: www.ti.com/c6000.

SPRUFK9 — TMS320C674x/OMAP-L1x Processor Peripherals Overview Reference Guide. Provides
an overview and briefly describes the peripherals available on the TMS320C674x Digital Signal
Processors (DSPs) and OMAP-L1x Applications Processors.

SPRUFK5 — TMS320C674x DSP Megamodule Reference Guide. Describes the TMS320C674x digital
signal processor (DSP) megamodule. Included is a discussion on the internal direct memory access
(IDMA) controller, the interrupt controller, the power-down controller, memory protection, bandwidth
management, and the memory and cache.

SPRUG82 — TMS320C674x DSP Cache User's Guide. Explains the fundamentals of memory caches
and describes how the two-level cache-based internal memory architecture in the TMS320C674x
digital signal processor (DSP) can be efficiently used in DSP applications. Shows how to maintain
coherence with external memory, how to use DMA to reduce memory latencies, and how to
optimize your code to improve cache efficiency. The internal memory architecture in the C674x
DSP is organized in a two-level hierarchy consisting of a dedicated program cache (L1P) and a
dedicated data cache (L1D) on the first level. Accesses by the CPU to the these first level caches
can complete without CPU pipeline stalls. If the data requested by the CPU is not contained in
cache, it is fetched from the next lower memory level, L2 or external memory.

TMS320C674x, TMS320C67x+, TMS320C64x+, C674x, TMS320C67x+, TMS320C64x+, XDS510, XDS560 are trademarks of Texas
Instruments.
Windows is a registered trademark of Microsoft Corporation.

SPRUFE8B-July 2010 Read This First 17

Copyright © 2010, Texas Instruments Incorporated

http://www.ti.com
http://www.ti.com/c6000
http://www.ti.com/lit/pdf/sprufk9
http://www.ti.com/lit/pdf/sprufk5
http://www.ti.com/lit/pdf/sprug82

18 Read This First SPRUFE8B-July 2010

Copyright © 2010, Texas Instruments Incorporated

] Chapter 1
l TEXAS SPRUFES8B Jp
—July 2010
INSTRUMENTS
Introduction
Topic Page
N @ V= Y= S 20
1.2 DSP Features and OPtiONScucuiuieieieieieeeeeneneeieieieaeaeeeaenenae e e aeaeaeeaenananreanaens 20
1.3 (DS A o] 11 (=03 U 22
SPRUFE8B-July 2010 Introduction 19

Copyright © 2010, Texas Instruments Incorporated

13 TEXAS
INSTRUMENTS

Overview www.ti.com

1.1 Overview

The TMS320C674x™ DSP is the new generation floating-point DSP that combines the TMS320C67x+™
DSP and the TMS320C64x+™ DSP instruction set architectures into one core.

The C674x™ megamodule is the name used to designate the CPU together with the hardware providing
memory, bandwidth management, interrupt, memory protection, and power-down support. This document
describes the CPU architecture, pipeline, instruction set, and interrupts of the C674x DSP. The C674x
megamodule is not described in this document since it is fully covered in the TMS320C674x DSP
Megamodule Reference Guide (SPRUFKS5).

1.2 DSP Features and Options

The C6000 devices execute up to eight 32-bit instructions per cycle. The C674x CPU consists of 64
general-purpose 32-bit registers and eight functional units. These eight functional units contain:

* Two multipliers
» Six ALUs
The C6000 generation has a complete set of optimized development tools, including an efficient
C compiler, an assembly optimizer for simplified assembly-language programming and scheduling, and a
Windows® operating system-based debugger interface for visibility into source code execution
characteristics. A hardware emulation board, compatible with the TI XDS510™ and XDS560™ emulator
interface, is also available. This tool complies with IEEE Standard 1149.1-1990, IEEE Standard Test
Access Port and Boundary-Scan Architecture.
Features of the C6000 devices include:
* Advanced VLIW CPU with eight functional units, including two multipliers and six arithmetic units
— Executes up to eight instructions per cycle for up to ten times the performance of typical DSPs
— Allows designers to develop highly effective RISC-like code for fast development time
» Instruction packing
— Gives code size equivalence for eight instructions executed serially or in parallel
— Reduces code size, program fetches, and power consumption
» Conditional execution of most instructions
— Reduces costly branching
— Increases parallelism for higher sustained performance
» Efficient code execution on independent functional units
— Industry's most efficient C compiler on DSP benchmark suite
— Industry's first assembly optimizer for fast development and improved parallelization
» 8/16/32-bit data support, providing efficient memory support for a variety of applications

e 40-bit arithmetic options add extra precision for vocoders and other computationally intensive
applications

e Saturation and normalization provide support for key arithmetic operations

» Field manipulation and instruction extract, set, clear, and bit counting support common operation found
in control and data manipulation applications.

20 Introduction SPRUFE8B-July 2010

Copyright © 2010, Texas Instruments Incorporated

http://www.ti.com/lit/pdf/sprufk5

13 TEXAS
INSTRUMENTS

www.ti.com

DSP Features and Options

The C674x devices include these additional features:

Each multiplier can perform two 16 x 16-bit or four 8 x 8 bit multiplies every clock cycle.
Quad 8-bit and dual 16-bit instruction set extensions with data flow support
Support for non-aligned 32-bit (word) and 64-bit (double word) memory accesses

Special communication-specific instructions have been added to address common operations in
error-correcting codes.

Bit count and rotate hardware extends support for bit-level algorithms.

Compact instructions: Common instructions (AND, ADD, LD, MPY) have 16-bit versions to reduce
code size.

Protected mode operation: A two-level system of privileged program execution to support higher
capability operating systems and system features such as memory protection.

Exceptions support for error detection and program redirection to provide robust code execution
Hardware support for modulo loop operation to reduce code size
Each multiplier can perform 32 x 32 bit multiplies

Additional instructions to support complex multiplies allowing up to eight 16-bit multiply/add/subtracts
per clock cycle

The C674x devices are enhanced for code size improvement and floating-point performance. These
additional features include:

Hardware support for single-precision (32-bit) and double-precision (64-bit) IEEE floating-point
operations.

Execute packets can span fetch packets.

Register file size is increased to 64 registers (32 in each datapath).
Floating-point addition and subtraction capability in the .S unit.
Mixed-precision multiply instructions.

32 x 32-bit integer multiply with 32-bit or 64-bit result.

The VelociTl architecture of the C6000 platform of devices make them the first off-the-shelf DSPs to use
advanced VLIW to achieve high performance through increased instruction-level parallelism. A traditional
VLIW architecture consists of multiple execution units running in parallel, performing multiple instructions
during a single clock cycle. Parallelism is the key to extremely high performance, taking these DSPs well
beyond the performance capabilities of traditional superscalar designs. VelociTl is a highly deterministic
architecture, having few restrictions on how or when instructions are fetched, executed, or stored. It is this
architectural flexibility that is key to the breakthrough efficiency levels of the TMS320C6000 Optimizing
compiler. VelociTl's advanced features include:

Instruction packing: reduced code size

All instructions can operate conditionally: flexibility of code
Variable-width instructions: flexibility of data types

Fully pipelined branches: zero-overhead branching.

SPRUFE8B-July 2010 Introduction 21

Copyright © 2010, Texas Instruments Incorporated

DSP Architecture

13 TEXAS
INSTRUMENTS

www.ti.com

1.3 DSP Architecture
Figure 1-1 is the block diagram for the C674x DSP. The C6000 devices come with program memory,
which, on some devices, can be used as a program cache. The devices also have varying sizes of data
memory. Peripherals such as a direct memory access (DMA) controller, power-down logic, and external
memory interface (EMIF) usually come with the CPU, while peripherals such as serial ports and host ports
are on only certain devices. Check the data sheet for your device to determine the specific peripheral
configurations you have.
Figure 1-1. TMS320C674x DSP Block Diagram
L1P Cache/SRAM
= Program Memory Controller (PMC)
Unified :
L2 Memory <—>| IDMA I Instruction Fetch
Cache/ [T Controller | I SPLOOP Buffer
SRAM (UMC) - ——
16/32-Bit Instruction Dispatch
Instruction Decode
Data Path A Data Path B
][.L1|.81]|.m1|.D1(|| .D2|.M2| .82 .L2
| Register File A | | Register File B |
External
Memory 0 4 1[1[
Controller
(EMC) Interrupt
—> Data Memory & Exception
> Controller Controller
. (DMC) Power
) i’ Control
L1D Cache/SRAM
22 Introduction SPRUFE8B-July 2010

Copyright © 2010, Texas Instruments Incorporated

I

TEXAS
INSTRUMENTS

www.ti.com DSP Architecture

13.1

1.3.2

133

Central Processing Unit (CPU)

The C674x CPU, in Figure 1-1 , contains:

» Program fetch unit

» 16/32 bit instruction dispatch unit, advanced instruction packing

* Instruction decode unit

» Two data paths, each with four functional units

* 64 32-bit registers

» Control registers

» Control logic

» Test, emulation, and interrupt logic

« Internal DMA (IDMA) for transfers between internal memories

The program fetch, instruction dispatch, and instruction decode units can deliver up to eight 32-bit
instructions to the functional units every CPU clock cycle. The processing of instructions occurs in each of
the two data paths (A and B), each of which contains four functional units (.L, .S, .M, and .D) and 32 32-bit
general-purpose registers. The data paths are described in more detail in Chapter 2. A control register file

provides the means to configure and control various processor operations. To understand how instructions
are fetched, dispatched, decoded, and executed in the data path, see Chapter 4.

Internal Memory

The DSP has a 32-bit, byte-addressable address space. Internal (on-chip) memory is organized in
separate data and program spaces. When off-chip memory is used, these spaces are unified on most
devices to a single memory space via the external memory interface (EMIF).

The DSP has a 256-bit read-only port to access internal program memory and two 256-bit ports (read and
write) to access internal data memory.

Memory and Peripheral Options

For an overview of the peripherals available on the C674x DSPs and OMAP-L1x Applications Processors,
refer to the TMS320C674x/OMAP-L1x Processor Peripherals Overview Reference Guide (SPRUFK9) or
to your device-specific data manual.

SPRUFE8B-July 2010 Introduction 23

Copyright © 2010, Texas Instruments Incorporated

http://www.ti.com/lit/pdf/sprufk9

24 Introduction SPRUFE8B-July 2010

Copyright © 2010, Texas Instruments Incorporated

. Chapter 2
I3 TEXAS SPRUFESB—July 2010

INSTRUMENTS
CPU Data Paths and Control

This chapter focuses on the CPU, providing information about the data paths and control registers. The
two register files and the data cross paths are described.

Topic Page
P22 S | 1o o [[1 o 26
2.2 General-Purpose ReGISIEr FIlEScuiuiiuieii it ettt e e e e eenenns 26
P22 N o o 1 o = 0 P 29
2.4 Register File Cross Patnsc.ieiiiiiiiiii e e e e e aas 30
2.5 Memory, Load, and Store Paths ... e 31
2.6 Data Address Paths ... 31
2 A - 1o S =1 o 31
P2 S B oY o o B =T o] €= 1 = 34
2.9 Control Register File EXTENSIONScuiuiuiuinieieieieieiieeeneeee e e e eeaenenen e seaeeaenenes 46
2.10 Control Register File Extensions for Floating-Point Operationsccocveveveienenenes 58

SPRUFE8B-July 2010 CPU Data Paths and Control 25

Copyright © 2010, Texas Instruments Incorporated

13 TEXAS

INSTRUMENTS
Introduction www.ti.com
2.1 Introduction
The components of the data path for the CPU are shown in Figure 2-1. These components consist of:
» Two general-purpose register files (A and B)
» Eight functional units (.L1, .L2, .S1, .S2, .M1, .M2, .D1, and .D2)
» Two load-from-memory data paths (LD1 and LD2)
e Two store-to-memory data paths (ST1 and ST2)
e Two data address paths (DAL and DA2)
» Two register file data cross paths (1X and 2X)
2.2 General-Purpose Register Files
There are two general-purpose register files (A and B) in the CPU data paths. Each of these files contains
32 32-bit registers (A0—A31 for file A and BO—B31 for file B), as shown in Table 2-1. The general-purpose
registers can be used for data, data address pointers, or condition registers.
The DSP general-purpose register files support data ranging in size from packed 8-bit through 64-bit
fixed-point data. Values larger than 32 bits, such as 40-bit and 64-bit quantities, are stored in register
pairs. The 32 LSBs of data are placed in an even-numbered register and the remaining 8 or 32 MSBs in
the next upper register (that is always an odd-numbered register). Packed data types store either four 8-bit
values or two 16-bit values in a single 32-bit register, or four 16-bit values in a 64-bit register pair.
There are 32 valid register pairs for 40-bit and 64-bit data in the DSP cores. In assembly language syntax,
a colon between the register names denotes the register pair, and the odd-numbered register is specified
first.
Figure 2-2 shows the register storage scheme for 40-bit long data. Operations requiring a long input
ignore the 24 MSBs of the odd-numbered register. Operations producing a long result zero-fill the 24
MSBs of the odd-numbered register. The even-numbered register is encoded in the opcode.
26 CPU Data Paths and Control SPRUFE8B-July 2010

Copyright © 2010, Texas Instruments Incorporated

13 TEXAS
INSTRUMENTS

www.ti.com

General-Purpose Register Files

Figure 2-1. CPU Data Paths
srcl M 0odd E\{en
register register
file A file A
IE src2 0 (A1,A3, A(QO'/Q,’Z(;)
¢ A5...A31)
odd dst »
dst R See note 4
even >
long src < 8
ST1b ¢ 32 MSB
32LSB
ST1a <«
long src |« 8
even dst >
dd dst | Seenote 4
Data path A s1° g
srcl f¢
src2 {
<
dst2 3 1 Seenote 1
- dst1 32 | See note 2
: src1 [«
<+—0
src2 64
LD1b 32 MSB < T See note 3
LD1a 32LSB »
dst >
DA1 .D1 src1 [¢ j
src2 : 2x
—
1x Even
0Odd register
src2)
DAz D2 E < register file B
. srcl ¢ file B (B0, B2,
dst > (B1, B3, B4...B30)
LD2a —32LSB > B5...B31)
LD2b 32 MSB >
src2 64
M2 < 1 See note 3
. srcl |4
dst1 32] Seenote 2
dst2 32 ${ Seenote 1
src2 {
srcl |«
82 odd dst »
Data path B even dst _ | Seenote4
« 8 e
long src |« 1
ST2a < 32 MSB
ST2b ¢ 32LSB
8
long src |«
even dst »
4d dst . See note 4
L2 0% >
src2
‘_
srcl
] Control
) Register

On .M unit, dst2 is 32 MSB.

On .M unit, dst1 is 32 MSB.

On .M unit, src2 is 64 bits.

On .L and .S units, odd dst connects to odd register files and even dst connects to even register files.

BwN -~

SPRUFE8B-July 2010 CPU Data Paths and Control 27

Copyright © 2010, Texas Instruments Incorporated

General-Purpose Register Files

13 TEXAS
INSTRUMENTS

www.ti.com

Table 2-1. 40-Bit/64-Bit Register Pairs

Register Files

A B
A1:A0 B1:BO
A3:A2 B3:B2
A5:A4 B5:B4
AT:A6 B7:B6
A9:A8 B9:B8

A11:A10 B11:B10
Al13:A12 B13:B12
Al15:Al14 B15:B14
Al7:Al6 B17:B16
A19:A18 B19:B18
A21:A20 B21:B20
A23:A22 B23:B22
A25:A24 B25:B24
A27:A26 B27:B26
A29:A28 B29:B28
A31:A30 B31:B30

Figure 2-2. Storage Scheme for 40-Bit Data in a Register Pair

31 Odd register 8 7 0 31 Even register 0
Ignoreed | i
|
Read from registers l :
39 | 32 31 0l
! 40-bit data
|
Write to registers i :
Odd register 39 32 31 Even register 0 :

Zero filled

! 40-bit data

28 CPU Data Paths and Control

Copyright © 2010, Texas Instruments Incorporated

SPRUFE8B-July 2010

I

www.ti.com

TEXAS

INSTRUMENTS

Functional Units

2.3 Functional Units
The eight functional units in the C6000 data paths can be divided into two groups of four; each functional
unit in one data path is almost identical to the corresponding unit in the other data path. The functional
units are described in Table 2-2.
Most data lines in the CPU support 32-bit operands, and some support long (40-bit) and doubleword
(64-bit) operands. Each functional unit has its own 32-bit write port, so all eight units can be used in
parallel every cycle, into a general-purpose register file (refer to Figure 2-1). All units ending in 1 (for
example, .L1) write to register file A, and all units ending in 2 write to register file B. Each functional unit
has two 32-bit read ports for source operands srcl and src2. Four units (.L1, .L2, .S1, and .S2) have an
extra 8-bit-wide port for 40-bit long writes, as well as an 8-bit input for 40-bit long reads. Since each DSP
multiplier can return up to a 64-bit result, an extra write port has been added from the multipliers to the
register file.
See Appendix B for a list of the instructions that execute on each functional unit.
Table 2-2. Functional Units and Operations Performed
Functional Unit Fixed-Point Operations Floating-Point Operations
.L unit (.L1, .L2) 32/40-bit arithmetic and compare operations Arithmetic operations
32-bit logical operations DP — SP conversion operations
Leftmost 1 or O counting for 32 bits INT — DP conversion operations
Normalization count for 32 and 40 bits INT — SP conversion operations
Byte shifts
Data packing/unpacking
5-bit constant generation
Dual 16-bit arithmetic operations
Quad 8-bit arithmetic operations
Dual 16-bit minimum/maximum operations
Quad 8-bit minimum/maximum operations
.S unit (.S1, .S2) 32-bit arithmetic operations Compare
32/40-bit shifts and 32-bit bit-field operations Reciprocal and reciprocal square-root operations
32-bit logical operations Absolute value operations
Branches SP — DP conversion operations
Constant generation SP and DP adds and subtracts
Register transfers to/from control register file SP and DP reverse subtracts (src2 - srcl)
(.S2 only)
Byte shifts
Data packing/unpacking
Dual 16-bit compare operations
Quad 8-bit compare operations
Dual 16-bit shift operations
Dual 16-bit saturated arithmetic operations
Quad 8-bit saturated arithmetic operations
SPRUFE8B-July 2010 CPU Data Paths and Control 29

Copyright © 2010, Texas Instruments Incorporated

13 TEXAS
INSTRUMENTS

Register File Cross Paths www.ti.com

24

Table 2-2. Functional Units and Operations Performed (continued)

Functional Unit Fixed-Point Operations Floating-Point Operations

.M unit (M1, .M2) 32 x 32-bit multiply operations Floating-point multiply operations
16 x 16-bit multiply operations Mixed-precision multiply operations
16 x 32-bit multiply operations

Quad 8 x 8-bit multiply operations

Dual 16 x 16-bit multiply operations

Dual 16 x 16-bit multiply with add/subtract
operations

Quad 8 x 8-bit multiply with add operation
Bit expansion

Bit interleaving/de-interleaving

Variable shift operations

Rotation

Galois Field Multiply

.D unit (.D1, .D2) 32-bit add, subtract, linear and circular address Load doubleword with 5-bit constant offset
calculation

Loads and stores with 5-bit constant offset

Loads and stores with 15-bit constant offset
(.D2 only)

Load and store doublewords with 5-bit constant
Load and store nonaligned words and doublewords
5-bit constant generation

32-bit logical operations

Register File Cross Paths

Each functional unit reads directly from and writes directly to the register file within its own data path. That
is, the .L1, .S1, .D1, and .M1 units write to register file A and the .L2, .S2, .D2, and .M2 units write to
register file B. The register files are connected to the opposite-side register file's functional units via the 1X
and 2X cross paths. These cross paths allow functional units from one data path to access a 32-bit
operand from the opposite side register file. The 1X cross path allows the functional units of data path A to
read their source from register file B, and the 2X cross path allows the functional units of data path B to
read their source from register file A.

On the DSP, all eight of the functional units have access to the register file on the opposite side, via a
cross path. The src2 inputs of .M1, .M2, .S1, .S2, .D1, and .D2 units are selectable between the cross
path and the same-side register file. In the case of .L1 and .L2, both srcl and src2 inputs are selectable
between the cross path and the same-side register file.

Only two cross paths, 1X and 2X, exist in the C6000 architecture. Thus, the limit is one source read from
each data path’s opposite register file per cycle, or a total of two cross path source reads per cycle. In the
DSP, two units on a side may read the same cross path source simultaneously.

On the DSP, a delay clock cycle is introduced whenever an instruction attempts to read a register via a
cross path that was updated in the previous cycle. This is known as a cross path stall. This stall is inserted
automatically by the hardware, no NOP instruction is needed. It should be noted that no stall is introduced
if the register being read is the destination for data placed by an LDx instruction. For more information see
Section 3.8.4. Techniques for avoiding this stall are discussed in the TMS320C6000 Programmers Guide

(SPRU198).

30

CPU Data Paths and Control SPRUFE8B-July 2010

Copyright © 2010, Texas Instruments Incorporated

http://www.ti.com/lit/pdf/spru198

13 TEXAS
INSTRUMENTS

www.ti.com Memory, Load, and Store Paths

2.5 Memory, Load, and Store Paths

The DSP supports doubleword loads and stores. There are four 32-bit paths for loading data from memory
to the register file. For side A, LD1a is the load path for the 32 LSBs and LD1b is the load path for the 32
MSBs. For side B, LD2a is the load path for the 32 LSBs and LD2b is the load path for the 32 MSBs.
There are also four 32-bit paths for storing register values to memory from each register file. For side A,
STla is the write path for the 32 LSBs and ST1b is the write path for the 32 MSBs. For side B, ST2a is
the write path for the 32 LSBs and ST2b is the write path for the 32 MSBs.

On the C6000 architecture, some of the ports for long and doubleword operands are shared between
functional units. This places a constraint on which long or doubleword operations can be scheduled on a
data path in the same execute packet. See Section 3.8.6.

2.6 Data Address Paths

The data address paths (DA1 and DA2) are each connected to the .D units in both data paths. This allows
data addresses generated by any one path to access data to or from any register.

The DAL and DA2 resources and their associated data paths are specified as T1 and T2, respectively. T1
consists of the DA1 address path and the LD1 and ST1 data paths. For the DSP, LD1 is comprised of
LD1la and LD1b to support 64-bit loads; ST1 is comprised of ST1la and ST1b to support 64-bit stores.
Similarly, T2 consists of the DA2 address path and the LD2 and ST2 data paths. For the DSP, LD2 is
comprised of LD2a and LD2b to support 64-bit loads; ST2 is comprised of ST2a and ST2b to support
64-bit stores.

The T1 and T2 designations appear in the functional unit fields for load and store instructions. For
example, the following load instruction uses the .D1 unit to generate the address but is using the LD2 path
resource from DA2 to place the data in the B register file. The use of the DA2 resource is indicated with
the T2 designation.

LDW . D1T2 *AQ[3], Bl

2.7 Galois Field

Modern digital communication systems typically make use of error correction coding schemes to improve
system performance under imperfect channel conditions. The scheme most commonly used is the
Reed-Solomon code, due to its robustness against burst errors and its relative ease of implementation.

The DSP contains Galois field multiply hardware that is used for Reed-Solomon encode and decode
functions. To understand the relevance of the Galois field multiply hardware, it is necessary to first define
some mathematical terms.

Two kinds of number systems that are common in algorithm development are integers and real humbers.
For integers, addition, subtraction, and multiplication operations can be performed. Division can also be
performed, if a nonzero remainder is allowed. For real numbers, all four of these operations can be
performed, even if there is a nonzero remainder for division operations.

Real numbers can belong to a mathematical structure called a field. A field consists of a set of data
elements along with addition, subtraction, multiplication, and division. A field of integers can also be
created if modulo arithmetic is performed.

An example is doing arithmetic using integers modulo 2. Perform the operations using normal integer
arithmetic and then take the result modulo 2. Table 2-3 illustrates addition, subtraction, and multiplication

modulo 2.
Table 2-3. Modulo 2 Arithmetic
Addition Subtraction Multiplication
+ 0 1 0 1 X 0 1
0 0 1 0 0 1 0 0 0
1 1 0 1 1 0 1 0 1
SPRUFE8B-July 2010 CPU Data Paths and Control 31

Copyright © 2010, Texas Instruments Incorporated

13 TEXAS
INSTRUMENTS

Galois Field www.ti.com

Note that addition and subtraction results are the same, and in fact are equivalent to the XOR
(exclusive-OR) operation in binary. Also, the multiplication result is equal to the AND operation in binary.
These properties are unique to modulo 2 arithmetic, but modulo 2 arithmetic is used extensively in error
correction coding. Another more general property is that division by any nonzero element is now defined.
Division can always be performed, if every element other than zero has a multiplicative inverse:

xxxl=1

Another example, arithmetic modulo 5, illustrates this concept more clearly. The addition, subtraction, and
multiplication tables are given in Table 2-4.

Table 2-4. Modulo 5 Arithmetic

Addition Subtraction Multiplication
+ 0 1 2 3 4 - 0 1 2 3 4 x 0 1 2 3 4
0 0 1 2 3 4 0 0 4 3 2 1 0 0 0 0 0 0
1 1 2 3 4 0 1 1 0 4 3 2 1 0 1 2 3 4
2 2 3 4 0 1 2 2 1 0 4 3 2 0 2 4 1 3
3 3 4 0 1 2 3 3 2 1 0 4 3 0 3 1 4 2
4 4 0 1 2 3 4 4 3 2 1 0 4 0 4 3 2 1

In the rows of the multiplication table, element 1 appears in every nonzero row and column. Every nonzero
element can be multiplied by at least one other element for a result equal to 1. Therefore, division always
works and arithmetic over integers modulo 5 forms a field. Fields generated in this manner are called finite
fields or Galois fields and are written as GF(X), such as GF(2) or GF(5). They only work when the
arithmetic performed is modulo a prime number.

Galois fields can also be formed where the elements are vectors instead of integers if polynomials are
used. Finite fields, therefore, can be found with a number of elements equal to any power of a prime
number. Typically, we are interested in implementing error correction coding systems using binary
arithmetic. All of the fields that are dealt with in Reed Solomon coding systems are of the form GF(2™).
This allows performing addition using XORs on the coefficients of the vectors, and multiplication using a
combination of ANDs and XORs.

A final example considers the field GF(22), which has 8 elements. This can be generated by arithmetic
modulo the (irreducible) polynomial P(x) = x* + x + 1. Elements of this field look like vectors of three bits.
Table 2-5 shows the addition and multiplication tables for field GF(23).

Note that the value 1 (001) appears in every nonzero row of the multiplication table, which indicates that
this is a valid field.

The channel error can now be modeled as a vector of bits, with a one in every bit position that an error
has occurred, and a zero where no error has occurred. Once the error vector has been determined, it can
be subtracted from the received message to determine the correct code word.

The Galois field multiply hardware on the DSP is named GMPY4. The GMPY4 instruction performs four
parallel operations on 8-bit packed data on the .M unit. The Galois field multiplier can be programmed to
perform all Galois multiplies for fields of the form GF(2™), where m can range between 1 and 8 using any
generator polynomial. The field size and the polynomial generator are controlled by the Galois field
polynomial generator function register (GFPGFR).

In addition to the GMPY4 instruction, the C674x DSP has the GMPY instruction that uses either the
GPLYA or GPLYB control register as a source for the polynomial (depending on whether the A or B side
functional unit is used) and produces a 32-bit result.

The GFPGFR, shown in Figure 2-6 and described in Table 2-10, contains the Galois field polynomial
generator and the field size control bits. These bits control the operation of the GMPY4 instruction.
GFPGFR can only be set via the MVC instruction. The default function after reset for the GMPY4
instruction is field size = 7h and polynomial = 1Dh.

32

CPU Data Paths and Control SPRUFE8B-July 2010

Copyright © 2010, Texas Instruments Incorporated

13 TEXAS

INSTRUMENTS

www.ti.com

Galois Field

2.7.1 Special Timing Considerations

If the next execute packet after an MVC instruction that changes the GFPGFR value contains a GMPY4
instruction, then the GMPY4 is controlled by the newly loaded GFPGFR value.

Table 2-5. Modulo Arithmetic for Field GF(2°)

Addition

+ 000 001 010 011 100 101 110 111
000 000 001 010 011 100 101 110 111
001 001 000 011 010 101 100 111 110
010 010 011 000 001 110 111 100 101
011 011 010 001 000 111 110 101 100
100 100 101 110 111 000 001 010 011
101 101 100 111 110 001 000 011 010
110 110 111 100 101 010 011 000 001
111 111 110 101 100 011 010 001 000

Multiplication

X 000 001 010 011 100 101 110 111
000 000 000 000 000 000 000 000 000
001 000 001 010 011 100 101 110 111
010 000 010 100 110 011 001 111 101
011 000 011 110 101 111 100 001 010
100 000 100 011 111 110 010 101 001
101 000 101 001 100 010 111 011 110
110 000 110 111 001 101 011 010 100
111 000 111 101 010 001 110 100 011

SPRUFE8B-July 2010 CPU Data Paths and Control 33

Copyright © 2010, Texas Instruments Incorporated

Control Register File

I

TEXAS

INSTRUMENTS

www.ti.com

2.8 Control Register File

Table 2-6 lists the control registers contained in the control register file.

Table 2-6. Control Registers

Acronym Register Name Section

AMR Addressing mode register Section 2.8.3
CSR Control status register Section 2.8.4
GFPGFR Galois field multiply control register Section 2.8.5
ICR Interrupt clear register Section 2.8.6
IER Interrupt enable register Section 2.8.7
IFR Interrupt flag register Section 2.8.8
IRP Interrupt return pointer register Section 2.8.9
ISR Interrupt set register Section 2.8.10
ISTP Interrupt service table pointer register Section 2.8.11
NRP Nonmaskable interrupt return pointer register Section 2.8.12
PCE1 Program counter, E1 phase Section 2.8.13

Control Register File Extensions
DIER Debug interrupt enable register Section 2.9.1
DNUM DSP core number register Section 2.9.2
ECR Exception clear register Section 2.9.3
EFR Exception flag register Section 2.9.4
GPLYA GMPY A-side polynomial register Section 2.9.5
GPLYB GMPY B-side polynomial register Section 2.9.6
IERR Internal exception report register Section 2.9.7
ILC Inner loop count register Section 2.9.8
ITSR Interrupt task state register Section 2.9.9
NTSR NMI/Exception task state register Section 2.9.10
REP Restricted entry point address register Section 2.9.11
RILC Reload inner loop count register Section 2.9.12
SSR Saturation status register Section 2.9.13
TSCH Time-stamp counter (high 32) register Section 2.9.14
TSCL Time-stamp counter (low 32) register Section 2.9.14
TSR Task state register Section 2.9.15
Control Register File Extensions for Floating-point Operations

FADCR Floating-point adder configuration register Section 2.10.1
FAUCR Floating-point auxiliary configuration register Section 2.10.2
FMCR Floating-point multiplier configuration register Section 2.10.3

34

CPU Data Paths and Control

Copyright © 2010, Texas Instruments Incorporated

SPRUFE8B-July 2010

I

TEXAS

INSTRUMENTS

www.ti.com Control Register File

28.1

2.8.2

Register Addresses for Accessing the Control Registers

Table 3-27 lists the register addresses for accessing the control register file. One unit (.S2) can read from
and write to the control register file. Each control register is accessed by the MVC instruction. See the
MVC instruction description (see MVC) for information on how to use this instruction.

Additionally, some of the control register bits are specially accessed in other ways. For example, arrival of
a maskable interrupt on an external interrupt pin, INTm, triggers the setting of flag bit IFRm. Subsequently,
when that interrupt is processed, this triggers the clearing of IFRm and the clearing of the global interrupt
enable bit, GIE. Finally, when that interrupt processing is complete, the B IRP instruction in the interrupt
service routine restores the pre-interrupt value of the GIE. Similarly, saturating instructions like SADD set
the SAT (saturation) bit in the control status register (CSR).

On the CPU, access to some of the registers is restricted when in User mode. See Chapter 8 for more
information.

Pipeline/Timing of Control Register Accesses

All MVC instructions are single-cycle instructions that complete their access of the explicitly named
registers in the E1 pipeline phase. This is true whether MVC is moving a general register to a control
register, or conversely. In all cases, the source register content is read, moved through the .S2 unit, and
written to the destination register in the E1 pipeline phase.

Pipeline Stage E1l

Read src2
Written dst
Unit in use .S2

Even though MVC modifies the particular target control register in a single cycle, it can take extra clocks
to complete modification of the non-explicitly named register. For example, the MVC cannot modify bits in
the IFR directly. Instead, MVC can only write 1's into the ISR or the ICR to specify setting or clearing,
respectively, of the IFR bits. MVC completes this ISR/ICR write in a single (E1) cycle but the modification
of the IFR bits occurs one clock later. For more information on the manipulation of ISR, ICR, and IFR, see
Section 2.8.10, Section 2.8.6, and Section 2.8.8 .

Saturating instructions, such as SADD, set the saturation flag bit (SAT) in CSR indirectly. As a result,
several of these instructions update the SAT bit one full clock cycle after their primary results are written to
the register file. For example, the SMPY instruction writes its result at the end of pipeline stage E2; its
primary result is available after one delay slot. In contrast, the SAT bit in CSR is updated one cycle later
than the result is written; this update occurs after two delay slots. (For the specific behavior of an
instruction, refer to the description of that individual instruction).

The B IRP and B NRP instructions directly update the GIE and NMIE bits, respectively. Because these
branches directly modify CSR and IER, respectively, there are no delay slots between when the branch is
issued and when the control register updates take effect.

SPRUFE8B-July 2010 CPU Data Paths and Control 35

Copyright © 2010, Texas Instruments Incorporated

13 TEXAS
INSTRUMENTS

Control Register File www.ti.com

2.8.3

Addressing Mode Register (AMR)

For each of the eight registers (A4-A7, B4-B7) that can perform linear or circular addressing, the
addressing mode register (AMR) specifies the addressing mode. A 2-bit field for each register selects the
address modification mode: linear (the default) or circular mode. With circular addressing, the field also
specifies which BK (block size) field to use for a circular buffer. In addition, the buffer must be aligned on a
byte boundary equal to the block size. The mode select fields and block size fields are shown in

Figure 2-3 and described in Table 2-7.

Figure 2-3. Addressing Mode Register (AMR)

31 26 25 21 20 16
] Reserved [BK1 | BKO \
R-0 RIW-0 RIW-0
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
| B7 MODE B6 MODE B5 MODE | B4 MODE A7MODE | A6MODE | A5MODE A4 MODE |
RIW-0 RIW-0 RIW-0 RIW-0 RIW-0 RIW-0 RIW-0 RIW-0

LEGEND: R = Readable by the MVC instruction; W = Writeable by the MVC instruction; -n = value after reset

Table 2-7. Addressing Mode Register (AMR) Field Descriptions

Bit Field Value |Description
31-26 | Reserved 0 Reserved. The reserved bit location is always read as 0. A value written to this field has no effect.
25-21 | BK1 0-1Fh | Block size field 1. A 5-bit value used in calculating block sizes for circular addressing. Table 2-8 shows
block size calculations for all 32 possibilities.
Block size (in bytes) = 289 | where N is the 5-bit value in BK1
20-16 | BKO 0-1Fh | Block size field 0. A 5-bit value used in calculating block sizes for circular addressing. Table 2-8 shows
block size calculations for all 32 possibilities.
Block size (in bytes) = 2™ | where N is the 5-bit value in BKO
15-14 | B7 MODE 0-3h | Address mode selection for register file B7.
0 Linear modification (default at reset)
1h Circular addressing using the BKO field
2h Circular addressing using the BK1 field
3h Reserved
13-12 | B6 MODE 0-3h | Address mode selection for register file B6.
0 Linear modification (default at reset)
1h Circular addressing using the BKO field
2h Circular addressing using the BK1 field
3h Reserved
11-10 |B5 MODE 0-3h | Address mode selection for register file B5.
0 Linear modification (default at reset)
1h Circular addressing using the BKO field
2h Circular addressing using the BK1 field
3h Reserved
9-8 B4 MODE 0-3h | Address mode selection for register file B4.
0 Linear modification (default at reset)
1h Circular addressing using the BKO field
2h Circular addressing using the BK1 field
3h Reserved
7-6 | A7 MODE 0-3h | Address mode selection for register file A7.
0 Linear modification (default at reset)
1h Circular addressing using the BKO field
2h Circular addressing using the BK1 field
3h Reserved
36 CPU Data Paths and Control SPRUFE8B-July 2010

Copyright © 2010, Texas Instruments Incorporated

13 TEXAS
INSTRUMENTS

www.ti.com Control Register File

Table 2-7. Addressing Mode Register (AMR) Field Descriptions (continued)

Bit Field Value | Description
5-4 | A6 MODE 0-3h | Address mode selection for register file A6.
0 Linear modification (default at reset)

1h Circular addressing using the BKO field

2h Circular addressing using the BK1 field

3h Reserved

3-2 A5 MODE 0-3h | Address mode selection for register file a5.
0 Linear modification (default at reset)

1h Circular addressing using the BKO field

2h Circular addressing using the BK1 field

3h Reserved

1-0 | A4 MODE 0-3h | Address mode selection for register file A4.
0 Linear modification (default at reset)

1h Circular addressing using the BKO field
2h Circular addressing using the BK1 field

3h Reserved

Table 2-8. Block Size Calculations

BKn Value Block Size BKn Value Block Size
00000 2 10000 131072
00001 4 10001 262144
00010 8 10010 524 288
00011 16 10011 1048576
00100 32 10100 2097 152
00101 64 10101 4194 304
00110 128 10110 8388 608
00111 256 10111 16 777 216
01000 512 11000 33554432
01001 1024 11001 67 108 864
01010 2048 11010 134217728
01011 4096 11011 268 435 456
01100 8192 11100 536 870912
01101 16 384 11101 1073741824
01110 32768 11110 2147 483 648
01111 65 536 11111 4294 967 296

SPRUFE8B-July 2010 CPU Data Paths and Control 37

Copyright © 2010, Texas Instruments Incorporated

13 TEXAS
INSTRUMENTS

Control Register File www.ti.com

2.8.4 Control Status Register (CSR)

The control status register (CSR) contains control and status bits. The CSR is shown in Figure 2-4 and
described in Table 2-9. For the PWRD, EN, PCC, and DCC fields, see the device-specific datasheet to
see if it supports the options that these fields control. The PCC and DCC fields are ignored on the
C674x CPU.

The power-down modes and their wake-up methods are programmed by the PWRD field (bits 15-10) of
CSR. The PWRD field of CSR is shown in Figure 2-5. When writing to CSR, all bits of the PWRD field
should be configured at the same time. A logic 0 should be used when writing to the reserved bit (bit 15)
of the PWRD field.

The PWRD, PCC, DCC, and PGIE fields cannot be written in User mode. The PCC and DCC fields can
only be modified in Supervisor mode. See Chapter 8 for more information.

Figure 2-4. Control Status Register (CSR)

31 24 23 16
\ CPU ID | REVISION ID |
R-x® R-x®
15 10 9 8 7 5 4 2 1 0
] PWRD SAT [EN | PCC DCC PGIE | GIE |
RISW-0 RIWC-0 R-x RISW-0 RISW-0 RISW-0 R/W-0

LEGEND: R = Readable by the MVC instruction; W = Writeable by the MVC instruction; SW = Writeable by the MVC instruction only in
supervisor mode; WC = Bit is cleared on write; -n = value after reset; -x = value is indeterminate after reset

@ See the device-specific datasheet for the default value of this field.

Figure 2-5. PWRD Field of Control Status Register (CSR)

15 14 13 12 11 10
Reserved Enabled or nonenabled interrupt wake ‘ Enabled interrupt wake | PD3 | PD2 PD1
R/SW-0 R/SW-0 R/SW-0 R/SW-0 R/SW-0 R/SW-0

LEGEND: R = Readable by the MVC instruction; W = Writeable by the MVC instruction; -n = value after reset; SW = Writeable by the MVC
instruction only in supervisor mode; -n = value after reset

Table 2-9. Control Status Register (CSR) Field Descriptions

Bit Field Value Description
31-24 |CPUID 0-FFh Identifies the CPU of the device. Not writable by the MVC instruction.
0-13h Reserved
14h C674x CPU
15h-FFh | Reserved

23-16 | REVISION ID 0-FFh Identifies silicon revision of the CPU. For the most current silicon revision information, see the
device-specific datasheet. Not writable by the MVC instruction.

38 CPU Data Paths and Control SPRUFE8B-July 2010

Copyright © 2010, Texas Instruments Incorporated

13 TEXAS
INSTRUMENTS

www.ti.com Control Register File

Table 2-9. Control Status Register (CSR) Field Descriptions (continued)

Bit Field Value Description
15-10 | PWRD 0-3Fh Power-down mode field. See Figure 2-5. Writable by the MVC instruction only in Supervisor
mode.
0 No power-down.
1h-8h Reserved
9h Power-down mode PD1; wake by an enabled interrupt.
Ah-10h Reserved
11h Power-down mode PD1; wake by an enabled or nonenabled interrupt.
12h-19h | Reserved
1Ah Power-down mode PD2; wake by a device reset.
1Bh Reserved
1Ch Power-down mode PD3; wake by a device reset.
1D-3Fh Reserved
9 SAT Saturate bit. Can be cleared only by the MVC instruction and can be set only by a functional

unit. The set by a functional unit has priority over a clear (by the MVC instruction), if they occur
on the same cycle. The SAT bit is set one full cycle (one delay slot) after a saturate occurs. The
SAT bit will not be modified by a conditional instruction whose condition is false.

No functional units generated saturated results.

1 One or more functional units performed an arithmetic operation which resulted in saturation.
8 EN Endian mode. Not writable by the MVC instruction.
0 Big endian
1 Little endian
7-5 pPCC 0-7h Program cache control mode. This field is ignored on the C674x CPU.
0-7h Reserved
4-2 DCC 0-7h Data cache control mode. This field is ignored on the C674x CPU.
0-7h Reserved
1 PGIE Previous GIE (global interrupt enable). This bit contains a copy of the GIE bit at the point when

interrupt is taken. It is physically the same bit as GIE bit in the interrupt task state register
(ITSR). Writeable by the MVC instruction only in Supervisor mode; not writable in User mode.

Interrupts will be disabled after return from interrupt.
1 Interrupts will be enabled after return from interrupt.

0 GIE Global interrupt enable. Physically the same bit as GIE bit in the task state register (TSR).
Writable by the MVC instruction in Supervisor and User mode. See Section 5.2 for details on
how the GIE bit affects interruptibility.

Disables all interrupts, except the reset interrupt and NMI (nonmaskable interrupt).

1 Enables all interrupts.

SPRUFE8B-July 2010 CPU Data Paths and Control 39

Copyright © 2010, Texas Instruments Incorporated

13 TEXAS
INSTRUMENTS

Control Register File www.ti.com

2.8.5 Galois Field Polynomial Generator Function Register (GFPGFR)

The Galois field polynomial generator function register (GFPGFR) controls the field size and the Galois
field polynomial generator of the Galois field multiply hardware. The GFPGFR is shown in Figure 2-6 and
described in Table 2-10. The Galois field is described in Section 2.7.

Figure 2-6. Galois Field Polynomial Generator Function Register (GFPGFR)

31 27 26 24 23 16
\ Reserved \ SIZE \ Reserved \
R-0 R/W-7h R-0
15 8 7 0
‘ Reserved ‘ POLY ‘
R-0 R/W-1Dh

LEGEND: R = Readable by the MVC instruction; W = Writeable by the MVC instruction; -n = value after reset

Table 2-10. Galois Field Polynomial Generator Function Register (GFPGFR) Field Descriptions

Bit Field Value | Description
31-27 | Reserved 0 Reserved. The reserved bit location is always read as 0. A value written to this field has no effect.
26-24 | SIZE 0-7h | Field size.
23-8 | Reserved 0 Reserved. The reserved bit location is always read as 0. A value written to this field has no effect.
7-0 POLY 0-FFh | Polynomial generator.
40 CPU Data Paths and Control SPRUFE8B-July 2010

Copyright © 2010, Texas Instruments Incorporated

13 TEXAS
INSTRUMENTS

www.ti.com

Control Register File

2.8.6 Interrupt Clear Register (ICR)

The interrupt clear register (ICR) allows you to manually clear the maskable interrupts (INT15-INT4) in the
interrupt flag register (IFR). Writing a 1 to any of the bits in ICR causes the corresponding interrupt flag
(IFn) to be cleared in IFR. Writing a 0 to any bit in ICR has no effect. Incoming interrupts have priority and
override any write to ICR. You cannot set any bit in ICR to affect NMI or reset. The ISR is shown in
Figure 2-7 and described in Table 2-11. See Chapter 5 for more information on interrupts.

NOTE: Any write to ICR (by the MVC instruction) effectively has one delay slot because the results
cannot be read (by the MVC instruction) in IFR until two cycles after the write to ICR.

Any write to ICR is ignored by a simultaneous write to the same bit in the interrupt set
register (ISR).

Figure 2-7. Interrupt Clear Register (ICR)

31 16
’ Reserved ‘
R-0
15 14 13 12 11 10 9 8 7 6 5 4 3 0
ic15 | 1c14 [ic13 [ici2 | icit [icio | ico | ic8 [ic7 | ice | ics | ica | Reserved
W-0 W-0 W-0 W-0 W-0 W-0 W-0 W-0 W-0 W-0 W-0 W-0 R-0
LEGEND: R = Read only; W = Writeable by the MVC instruction; -n = value after reset
Table 2-11. Interrupt Clear Register (ICR) Field Descriptions
Bit Field Value | Description
31-16 | Reserved 0 Reserved. The reserved bit location is always read as 0. A value written to this field has no effect.
15-4 |ICn Interrupt clear.
Corresponding interrupt flag (IFn) in IFR is not cleared.
Corresponding interrupt flag (IFn) in IFR is cleared.
3-0 Reserved Reserved. The reserved bit location is always read as 0. A value written to this field has no effect.
CPU Data Paths and Control 41

SPRUFE8B-July 2010

Copyright © 2010, Texas Instruments Incorporated

I

Control Register File

TEXAS

INSTRUMENTS

www.ti.com

2.8.7 |Interrupt Enable Register (IER)

The interrupt enable register (IER) enables and disables individual interrupts. The IER is shown in

Figure 2-8 and described in Table 2-12.

The IER is not accessible in User mode. See Section 8.2.4.1 for more information. See Chapter 5 for

more information on interrupts.

Figure 2-8. Interrupt Enable Register (IER)

31 16
‘ Reserved ‘
R-0
15 14 12 11 10 9 8 7 6 5 4 3 2 1 0
| E15 | 1E14 [1E13 [1E12 | 1E11 [E10 | 1EQ | IE8 [1IE7 | 1IE6 | IES | IE4 | Reserved |[NMIE| 1 |
RW-0 RW-0 RMW-0 RMW-0 RW-O RW-0 RMW-0 RW-0 RW-0 RMW-0 RMW-0 RW-0 R-0 RW-0 R-1

LEGEND: R = Readable by the MVC instruction; W = Writeable by the MVC instruction; -n = value after reset

Table 2-12. Interrupt Enable Register (IER) Field Descriptions

Bit Field Value | Description
31-16 | Reserved 0 Reserved. The reserved bit location is always read as 0. A value written to this field has no effect.
15-4 |IEn Interrupt enable. An interrupt triggers interrupt processing only if the corresponding bit is set to 1.
Interrupt is disabled.
Interrupt is enabled.
3-2 Reserved Reserved. The reserved bit location is always read as 0. A value written to this field has no effect.
1 NMIE Nonmaskable interrupt enable. An interrupt triggers interrupt processing only if the bit is set to 1.
The NMIE bit is cleared at reset. After reset, you must set the NMIE bit to enable the NMI and to allow
INT15-INT4 to be enabled by the GIE bit in CSR and the corresponding IER bit. You cannot manually
clear the NMIE bit; a write of O has no effect. The NMIE bit is also cleared by the occurrence of an NMI.
All nonreset interrupts are disabled.
All nonreset interrupts are enabled. The NMIE bit is set only by completing a B NRP instruction or by a
write of 1 to the NMIE bit.
0 1 1 Reset interrupt enable. You cannot disable the reset interrupt.
42 CPU Data Paths and Control SPRUFE8B-July 2010

Copyright © 2010, Texas Instruments Incorporated

13 TEXAS
INSTRUMENTS

www.ti.com Control Register File

2.8.8 Interrupt Flag Register (IFR)

The interrupt flag register (IFR) contains the status of INT4-INT15 and NMI interrupt. Each corresponding
bit in the IFR is set to 1 when that interrupt occurs; otherwise, the bits are cleared to 0. If you want to
check the status of interrupts, use the MVC instruction to read the IFR. (See the MVC instruction
description (see MVC) for information on how to use this instruction.) The IFR is shown in Figure 2-9 and
described in Table 2-13. See Chapter 5 for more information on interrupts.

Figure 2-9. Interrupt Flag Register (IFR)

31 16
‘ Reserved ‘
R-0
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
| iF15 | IF14 [k23 | k12 | k11 | F1o | F9 | iF8 [IF7 | IF6 | IF5 | IF4 | Reseved | NMIF| 0 |
RO RO RO RO RO RO RO RO RO RO RO RO R-0 RO R0

LEGEND: R = Readable by the MVC instruction; -n = value after reset

Table 2-13. Interrupt Flag Register (IFR) Field Descriptions

Bit Field Value | Description
31-16 | Reserved 0 Reserved. The reserved bit location is always read as 0. A value written to this field has no effect.
15-4 | IFn Interrupt flag. Indicates the status of the corresponding maskable interrupt. An interrupt flag may be

manually set by setting the corresponding bit (ISn) in the interrupt set register (ISR) or manually cleared
by setting the corresponding bit (ICn) in the interrupt clear register (ICR).

Interrupt has not occurred.
Interrupt has occurred.

3-2 Reserved 0 Reserved. The reserved bit location is always read as 0. A value written to this field has no effect.
1 NMIF Nonmaskable interrupt flag.
0 Interrupt has not occurred.

Interrupt has occurred.

0 0 0 Reset interrupt flag.

2.8.9 Interrupt Return Pointer Register (IRP)

The interrupt return pointer register (IRP) contains the return pointer that directs the CPU to the proper
location to continue program execution after processing a maskable interrupt. A branch using the address
in IRP (B IRP) in your interrupt service routine returns to the program flow when interrupt servicing is
complete. The IRP is shown in Figure 2-10.

The IRP contains the 32-bit address of the first execute packet in the program flow that was not executed
because of a maskable interrupt. Although you can write a value to IRP, any subsequent interrupt
processing may overwrite that value.

See Chapter 5 for more information on interrupts.

Figure 2-10. Interrupt Return Pointer Register (IRP)
31 0
IRP
R/W-x
LEGEND: R = Readable by the MVC instruction; W = Writeable by the MVC instruction; -x = value is indeterminate after reset

SPRUFE8B-July 2010 CPU Data Paths and Control 43

Copyright © 2010, Texas Instruments Incorporated

13 TEXAS
INSTRUMENTS

Control Register File www.ti.com

2.8.10 Interrupt Set Register (ISR)

The interrupt set register (ISR) allows you to manually set the maskable interrupts (INT15-INT4) in the
interrupt flag register (IFR). Writing a 1 to any of the bits in ISR causes the corresponding interrupt flag
(IFn) to be set in IFR. Writing a 0 to any bit in ISR has no effect. You cannot set any bit in ISR to affect
NMI or reset. The ISR is shown in Figure 2-11 and described in Table 2-14. See Chapter 5 for more
information on interrupts.

NOTE: Any write to ISR (by the MVC instruction) effectively has one delay slot because the results
cannot be read (by the MVC instruction) in IFR until two cycles after the write to ISR.

Any write to the interrupt clear register (ICR) is ignored by a simultaneous write to the same

bit in ISR.
Figure 2-11. Interrupt Set Register (ISR)
31 16
’ Reserved ‘
R-0

15 14 13 12 11 10 9 8 7 6 5 4 3 0
| 1515 | 1s14 | 1s13 | 1s12 | 1s11 [is10 | 1s9 | 1s8 [is7 | 1s6 | 1s5 | is4 | Reserved |
WO WO W0 W-0 W0 W0 W0 W0 W0 W0 W0 WO R-0

LEGEND: R = Read only; W = Writeable by the MVC instruction; -n = value after reset

Table 2-14. Interrupt Set Register (ISR) Field Descriptions

Bit Field Value | Description
31-16 | Reserved 0 Reserved. The reserved bit location is always read as 0. A value written to this field has no effect.
15-4 |ISn Interrupt set.

Corresponding interrupt flag (IFn) in IFR is not set.
Corresponding interrupt flag (IFn) in IFR is set.

3-0 Reserved 0 Reserved. The reserved bit location is always read as 0. A value written to this field has no effect.

44 CPU Data Paths and Control SPRUFE8B-July 2010

Copyright © 2010, Texas Instruments Incorporated

13 TEXAS
INSTRUMENTS

www.ti.com Control Register File
2.8.11 Interrupt Service Table Pointer Register (ISTP)

The interrupt service table pointer register (ISTP) is used to locate the interrupt service routine (ISR). The
ISTB field identifies the base portion of the address of the interrupt service table (IST) and the HPEINT
field identifies the specific interrupt and locates the specific fetch packet within the IST. The ISTP is shown
in Figure 2-12 and described in Table 2-15. See Section 5.1.2.2 for a discussion of the use of the ISTP.

The ISTP is not accessible in User mode. See Section 8.2.4.1 for more information. See Chapter 5 for
more information on interrupts.

Figure 2-12. Interrupt Service Table Pointer Register (ISTP)

31 16
] ISTB \
RIW-S
15 10 9 5 4 3 2 1 0
\ ISTB HPEINT | o] o | o | o | o |
RIW-S R-0 RO RO RO RO RO

LEGEND: R = Readable by the MVC instruction; W = Writeable by the MVC instruction; -n = value after reset; S = See the device-specific
data manual for the default value of this field after reset

Table 2-15. Interrupt Service Table Pointer Register (ISTP) Field Descriptions

Bit Field Value Description

31-10 |ISTB 0-3F FFFFh Interrupt service table base portion of the IST address. This field is cleared to a device-specific
default value on reset; therefore, upon startup the IST must reside at this specific address. See
the device-specific data manual for more information. After reset, you can relocate the IST by
writing a new value to ISTB. If relocated, the first ISFP (corresponding to RESET) is never
executed via interrupt processing, because reset clears the ISTB to its default value. See
Example 5-1.

9-5 HPEINT 0-1Fh Highest priority enabled interrupt that is currently pending. This field indicates the number
(related bit position in the IFR) of the highest priority interrupt (as defined in Table 5-1) that is
enabled by its bit in the IER. Thus, the ISTP can be used for manual branches to the highest
priority enabled interrupt. If no interrupt is pending and enabled, HPEINT contains the value 0.
The corresponding interrupt need not be enabled by NMIE (unless it is NMI) or by GIE.

4-0 |0 0 Cleared to 0 (fetch packets must be aligned on 8-word (32-byte) boundaries).

2.8.12 Nonmaskable Interrupt (NMI) Return Pointer Register (NRP)

The NMI return pointer register (NRP) contains the return pointer that directs the CPU to the proper
location to continue program execution after NMI processing. A branch using the address in NRP (B NRP)
in your interrupt service routine returns to the program flow when NMI servicing is complete. The NRP is
shown in Figure 2-13.

The NRP contains the 32-bit address of the first execute packet in the program flow that was not executed
because of a nonmaskable interrupt. Although you can write a value to NRP, any subsequent interrupt
processing may overwrite that value.

See Chapter 5 for more information on interrupts. See Chapter 6 for more information on exceptions.

Figure 2-13. NMI Return Pointer Register (NRP)
31 0
NRP
R/W-x
LEGEND: R = Readable by the MVC instruction; W = Writeable by the MVC instruction; -x = value is indeterminate after reset

SPRUFE8B-July 2010 CPU Data Paths and Control 45

Copyright © 2010, Texas Instruments Incorporated

Control Register File Extensions

I

TEXAS

INSTRUMENTS

www.ti.com

2.8.13 E1 Phase Progra

m Counter (PCE1)

The E1 phase program counter (PCE1), shown in Figure 2-14, contains the 32-bit address of the fetch

packet in the E1 pipeli

31

ne phase.

Figure 2-14. E1 Phase Program Counter (PCE1)

PCE1

LEGEND: R = Readable by the MVC instruction; -x = value is indeterminate after reset

2.9 Control Register Fi

Table 2-16 lists the additional control registers in the DSP.

R-x

le Extensions

Table 2-16. Control Register File Extensions

Acronym Register Name Section
DIER Debug interrupt enable register Section 2.9.1
DNUM DSP core number register Section 2.9.2
ECR Exception clear register Section 2.9.3
EFR Exception flag register Section 2.9.4
GPLYA GMPY polynomial for A side register Section 2.9.5
GPLYB GMPY polynomial for B side register Section 2.9.6
IERR Internal exception report register Section 2.9.7
ILC Inner loop count register Section 2.9.8
ITSR Interrupt task state register Section 2.9.9
NTSR NMI/Exception task state register Section 2.9.10
REP Restricted entry point register Section 2.9.11
RILC Reload inner loop count register Section 2.9.12
SSR Saturation status register Section 2.9.13
TSCH Time stamp counter register—high half of 64 bit Section 2.9.14
TSCL Time stamp counter register—low half of 64 bit Section 2.9.14
TSR Task state register Section 2.9.15

46 CPU Data Paths and Control

Copyright © 2010, Texas Instruments Incorporated

SPRUFE8B-July 2010

13 TEXAS
INSTRUMENTS

www.ti.com Control Register File Extensions

2.9.1 Debug Interrupt Enable Register (DIER)

The debug interrupt enable register (DIER) is used to designate which interrupts and exceptions are
treated as high-priority interrupts when operating in real-time emulation mode. The DIER is shown in
Figure 2-15 and described in Table 2-17.

Figure 2-15. Debug Interrupt Enable Register (DIER)

31 30 29 16
| NMI_| EXCEP | Reserved |
RW-0 R/W-0 R-0

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
[INT15 [INT14 [INT23 [INT22 [INT22 [INT20 | INTQ [INT8 [INT7 | INT6 | INTS | INT4 | Reserved | WSEL | Rsvd |
RW-0 RW-0 RMW-0 RW-0 RW-0 RW-0 RW-0 RW-0 RW-0 RMW-0 RW-0 R/MW-0 R-0 RIW-0 R/W-0

LEGEND: R = Readable by the MVC instruction; W = Writeable by the MVC instruction; -n = value after reset

Table 2-17. Debug Interrupt Enable Register (DIER) Field Descriptions

Bit Field Value | Description
31 NMI Nonmaskable interrupt (NMI).
1 Designate NMI as high-priority interrupt.
30 EXCEP Maskable external exception (EXCEP).
Designate EXCEP as high-priority interrupt.
29-16 | Reserved 0 Reserved
15 INT15 Maskable interrupt 15 (INT15).
1 Designate INT15 as high-priority interrupt.
14 INT14 Maskable interrupt 14 (INT14).
1 Designate INT14 as high-priority interrupt.
13 INT13 Maskable interrupt 13 (INT13).
1 Designate INT13 as high-priority interrupt.
12 INT12 Maskable interrupt 12 (INT12).
1 Designate INT12 as high-priority interrupt.
11 INT11 Maskable interrupt 11 (INT11).
1 Designate INT11 as high-priority interrupt.
10 INT10 Maskable interrupt 10 (INT10).
1 Designate INT10 as high-priority interrupt.
9 INT9 Maskable interrupt 9 (INT9).
1 Designate INT9 as high-priority interrupt.
8 INT8 Maskable interrupt 8 (INT8).
1 Designate INT8 as high-priority interrupt.
7 INT7 Maskable interrupt 7 (INT7).
1 Designate INT7 as high-priority interrupt.
6 INT6 Maskable interrupt 6 (INT6).
1 Designate INT6 as high-priority interrupt.
5 INT5 Maskable interrupt 5 (INT5).
1 Designate INT5 as high-priority interrupt.
4 INT4 Maskable interrupt 4 (INT4).
Designate INT4 as high-priority interrupt.
3-2 Reserved 0 Reserved
1 WSEL Write control select. This bit must be cleared to 0 to modify bits 31-2.
Bits 31-2 can be modified.
0 Reserved 0 Reserved
SPRUFE8B-July 2010 CPU Data Paths and Control 47

Copyright © 2010, Texas Instruments Incorporated

13 TEXAS
INSTRUMENTS

Control Register File Extensions www.ti.com

2.9.2 DSP Core Number Register (DNUM)

Multiple CPUs may be used in a system. The DSP core number register (DNUM), provides an identifier to
shared resources in the system which identifies which CPU is accessing those resources. The contents of
this register are set to a specific value (depending on the device) at reset. See your device-specific data
manual for the reset value of this register. The DNUM is shown in Figure 2-16.

Figure 2-16. DSP Core Number Register (DNUM)
31 16
\ Reserved
R-0

15 8 7 0
’ Reserved DSP number ‘
R-0 R-S

LEGEND: R = Readable by the MVC instruction; -n = value after reset; S = See the device-specific data manual for the default value of this
field after reset

2.9.3 Exception Clear Register (ECR)

The exception clear register (ECR) is used to clear individual bits in the exception flag register (EFR).
Writing a 1 to any bit in ECR clears the corresponding bit in EFR.

The ECR is not accessible in User mode. See Section 8.2.4.1 for more information. See Chapter 6 for
more information on exceptions.

48 CPU Data Paths and Control SPRUFE8B-July 2010

Copyright © 2010, Texas Instruments Incorporated

13 TEXAS

INSTRUMENTS

www.ti.com

Control Register File Extensions

2.9.4 Exception Flag Register (EFR)

The exception flag register (EFR) contains bits that indicate which exceptions have been detected.
Clearing the EFR bits is done by writing a 1 to the corresponding bit position in the exception clear register
(ECR). Writing a 0 to the bits in this register has no effect. The EFR is shown in Figure 2-17 and
described in Table 2-18.

The EFR is not accessible in User mode. See Section 8.2.4.1 for more information. See Chapter 6 for

more information on exceptions.

Figure 2-17. Exception Flag Register (EFR)

31 30
[NXF | ExF | Reserved \
RIW-0 R/W-0 R-0
15 2 1
\ Reserved | IXF [sxF |
R-0 RIW-0 R/W-0

LEGEND: R = Readable by the MVC EFR instruction only in Supervisor mode; W = Clearable by the MVC ECR instruction only in
Supervisor mode; -n = value after reset

Table 2-18. Exception Flag Register (EFR) Field Descriptions

Bit

Field

Value

Description

31

NXF

NMI exception flag.
NMI exception has not been detected.
NMI exception has been detected.

30

EXF

EXCEP flag.
Exception has not been detected.
Exception has been detected.

29-2

Reserved

Reserved. Read as 0.

IXF

Internal exception flag.
Internal exception has not been detected.
Internal exception has been detected.

SXF

Software exception flag (set by SWE or SWENR instructions).
Software exception has not been detected.
Software exception has been detected.

SPRUFE8B-July 2010

Copyright © 2010, Texas Instruments Incorporated

CPU Data Paths and Control

49

13 TEXAS
INSTRUMENTS

Control Register File Extensions www.ti.com

2.9.5 GMPY Polynomial—A Side Register (GPLYA)

The GMPY instruction (see GMPY) uses the 32-bit polynomial in the GMPY polynomial—A side register
(GPLYA), Figure 2-18, when the instruction is executed on the M1 unit.

Figure 2-18. GMPY Polynomial A-Side Register (GPLYA)
31 0
32-bit polynomial
R/W-0
LEGEND: R = Readable by the MVC instruction; W = Writeable by the MVC instruction; -n = value after reset

2.9.6 GMPY Polynomial—B Side Register (GPLYB)

The GMPY instruction (see GMPY) uses the 32-bit polynomial in the GMPY polynomial—B side register
(GPLYB), Figure 2-19, when the instruction is executed on the M2 unit.

Figure 2-19. GMPY Polynomial B-Side (GPLYB)
31 0
32-bit polynomial
R/W-0
LEGEND: R = Readable by the MVC instruction; W = Writeable by the MVC instruction; -n = value after reset

50 CPU Data Paths and Control SPRUFE8B-July 2010

Copyright © 2010, Texas Instruments Incorporated

13 TEXAS
INSTRUMENTS

www.ti.com Control Register File Extensions

2.9.7 Internal Exception Report Register (IERR)

The internal exception report register (IERR) contains flags that indicate the cause of the internal
exception. In the case of simultaneous internal exceptions, the same flag may be set by different
exception sources. In this case, it may not be possible to determine the exact causes of the individual
exceptions. The IERR is shown in Figure 2-20 and described in Table 2-19.

The IERR is not accessible in User mode. See Section 8.2.4.1 for more information. See Chapter 6 for
more information on exceptions.

Figure 2-20. Internal Exception Report Register (IERR)

31 16
’ Reserved ‘
R-0
15 9 8 7 6 5 4 3 2 1 0
\ Reserved | mMsx | Bx | PRX | RAX | Rex | opx | EPX | FPX | IFX |
R0 RW-0 RW-0 RW-0 RMW-0 RW-0 RW-0 RMW-0 RW-0 R/MW-0

LEGEND: R = Readable by the MVC instruction only in Supervisor mode; W = Writeable by the MVC instruction only in Supervisor mode;
-n = value after reset

Table 2-19. Internal Exception Report Register (IERR) Field Descriptions

Bit Field Value | Description
31-9 | Reserved 0 Reserved. Read as 0.
8 MSX Missed stall exception

Missed stall exception is not the cause.
Missed stall exception is the cause.

7 LBX SPLOOP buffer exception

SPLOOP buffer exception is not the cause.

SPLOOP buffer exception is the cause.

6 PRX Privilege exception
Privilege exception is not the cause.
Privilege exception is the cause.

5 RAX Resource access exception
Resource access exception is not the cause.
Resource access exception is the cause.

4 RCX Resource conflict exception
Resource conflict exception is not the cause.
Resource conflict exception is the cause.

3 OPX Opcode exception
Opcode exception is not the cause.
Opcode exception is the cause.

2 EPX Execute packet exception
Execute packet exception is not the cause.
Execute packet exception is the cause.

1 FPX Fetch packet exception
Fetch packet exception is not the cause.
Fetch packer exception is the cause.

0 IFX Instruction fetch exception
Instruction fetch exception is not the cause.
Instruction fetch exception is the cause.

SPRUFE8B-July 2010 CPU Data Paths and Control 51

Copyright © 2010, Texas Instruments Incorporated

Control Register File Extensions

13 TEXAS

INSTRUMENTS

www.ti.com

2.9.8 SPLOOP Inner Loop Count Register (ILC)

The SPLOOP or SPLOOPD instructions use the SPLOOP inner loop count register (ILC), Figure 2-21, as
the count of the number of iterations left to perform. The ILC content is decremented at each stage

boundary until the ILC content reaches 0.

Figure 2-21. Inner Loop Count Register (ILC)
31

32-bit inner loop count

R/W-0
LEGEND: R = Readable by the MVC instruction; W = Writeable by the MVC instruction; -n = value after reset

2.9.9 Interrupt Task State Register (ITSR)

The interrupt task state register (ITSR) is used to store the contents of the task state register (TSR) in the
event of an interrupt. The ITSR is shown in Figure 2-22 and described in Table 2-20. For detailed bit

descriptions, see Section 2.9.15.
The GIE bit in ITSR is physically the same bit as the PGIE bit in CSR.

The ITSR is not accessible in User mode. See Section 8.2.4.1 for more information.

Figure 2-22. Interrupt Task State Register (ITSR)

31 16
’ Reserved ‘
R-0
15 14 13 11 10 9 8 7 6 5 4 3 2 1 0
| B | spPx| Reserved | ExXC | INT [Rsvd | oxM | Rsvd |DBGM | XEN | GEE | SGIE | GIE |
RIW-0 R/W-0 R0 RW-0 RW-0 R-0 R/W-0 RO RW-0 RMW-0 RW-0 RW-0 R/MW-0

LEGEND: R = Readable by the MVC instruction only in Supervisor mode; W = Writeable by the MVC instruction only in Supervisor mode;

-n = value after reset

Table 2-20. Interrupt Task State Register (ITSR) Field Descriptions

Bit Field Description
31-16 | Reserved Reserved. Read as 0.
15 1B Interrupt occurred while interrupts were blocked.
14 SPLX Interrupt occurred during an SPLOOP.
13-11 |Reserved Reserved. Read as 0.
10 EXC Contains EXC bit value in TSR at point of interrupt.
9 INT Contains INT bit value in TSR at point of interrupt.
8 Reserved Reserved. Read as 0.
7-6 CXM Contains CXM bit value in TSR at point of interrupt.
5 Reserved Reserved. Read as 0.
4 DBGM Contains DBGM bit value in TSR at point of interrupt.
3 XEN Contains XEN bit value in TSR at point of interrupt.
2 GEE Contains GEE bit value in TSR at point of interrupt.
1 SGIE Contains SGIE bit value in TSR at point of interrupt.
0 GIE Contains GIE bit value in TSR at point of interrupt.

52 CPU Data Paths and Control

Copyright © 2010, Texas Instruments Incorporated

SPRUFE8B-July 2010

13 TEXAS
INSTRUMENTS

www.ti.com Control Register File Extensions

2.9.10 NMI/Exception Task State Register (NTSR)

The NMI/exception task state register (NTSR) is used to store the contents of the task state register (TSR)
and the conditions under which an exception occurred in the event of a nonmaskable interrupt (NMI) or an
exception. The NTSR is shown in Figure 2-23 and described in Table 2-21. For detailed bit descriptions
(except for the HWE bit), see Section 2.9.15. The HWE bit is set by taking a hardware exception (NMI,
EXCEP, or internal) and is cleared by either SWE or SWENR instructions.

The NTSR is not accessible in User mode. See Section 8.2.4.1 for more information.

Figure 2-23. NMI/Exception Task State Register (NTSR)

31 17 16
’ Reserved | HWE ‘
R-0 RIW-0

15 14 13 11 10 9 8 7 6 5 4 3 2 1 0
| B | spPx| Reserved | EXC | INT [Rsvd | oxM | Rsvd |DBGM | XEN | GEE | SGIE | GIE |
RIW-0 R/W-0 R0 RW-0 RW-0 R-0 RIW-0 RO RW-0 RMW-0 RMW-0 RW-0 R/MW-0

LEGEND: R = Readable by the MVC instruction only in Supervisor mode; W = Writeable by the MVC instruction only in Supervisor mode;
-n = value after reset

Table 2-21. NMI/Exception Task State Register (NTSR) Field Descriptions

Bit Field Description
31-17 | Reserved Reserved. Read as 0.
16 HWE Hardware exception taken (NMI, EXCEP, or internal).
15 1B Exception occurred while interrupts were blocked.
14 SPLX Exception occurred during an SPLOOP.
13-11 |Reserved Reserved. Read as 0.
10 EXC Contains EXC bit value in TSR at point exception taken.
9 INT Contains INT bit value in TSR at point exception taken.
8 Reserved Reserved. Read as 0.
7-6 CXM Contains CXM bit value in TSR at point exception taken.
5 Reserved Reserved. Read as 0.
4 DBGM Contains DBGM bit value in TSR at point exception taken.
3 XEN Contains XEN bit value in TSR at point exception taken.
2 GEE Contains GEE bit value in TSR at point exception taken.
1 SGIE Contains SGIE bit value in TSR at point exception taken.
0 GIE Contains GIE bit value in TSR at point exception taken.

2.9.11 Restricted Entry Point Register (REP)

The restricted entry point register (REP) is used by the SWENR instruction as the target of the change of
control when an SWENR instruction is issued. The contents of REP should be preinitialized by the
processor in Supervisor mode before any SWENR instruction is issued. See Section 8.2.4.1 for more
information. REP cannot be modified in User mode.

SPRUFE8B-July 2010 CPU Data Paths and Control 53

Copyright © 2010, Texas Instruments Incorporated

Control Register File Extensions

13 TEXAS
INSTRUMENTS

www.ti.com

2.9.12 SPLOOP Reload Inner Loop Count Register (RILC)

Predicated SPLOOP or SPLOOPD instructions used in conjunction with a SPMASKR or SPKERNELR
instruction use the SPLOOP reload inner loop count register (RILC), Figure 2-24, as the iteration count
value to be written to the SPLOOP inner loop count register (ILC) in the cycle before the reload operation
begins. See Chapter 7 for more information.

31

Figure 2-24. Reload Inner Loop Count Register (RILC)

32-bit inner loop count reload

R/W-0

LEGEND: R = Readable by the MVC instruction; W = Writeable by the MVC instruction; -n = value after reset

2.9.13 Saturation Status Register (SSR)

The saturation status register (SSR) provides saturation flags for each functional unit, making it possible
for the program to distinguish between saturations caused by different instructions in the same execute
packet. There is no direct connection to the SAT bit in the control status register (CSR); writes to the SAT
bit have no effect on SSR and writes to SSR have no effect on the SAT bit. Care must be taken when
restoring SSR and the SAT bit when returning from a context switch. Since the SAT bit cannot be written
to a value of 1 using the MVC instruction, restoring the SAT bit to a 1 must be done by executing an
instruction that results in saturation. The saturating instruction would affect SSR; therefore, SSR must be
restored after the SAT bit has been restored. The SSR is shown in Figure 2-25 and described in

Table 2-22.

Instructions resulting in saturation set the appropriate unit flag in SSR in the cycle following the writing of

the result to the register file. The setting of the flag from a functional unit takes precedence over a write to
the bit from an MVC instruction. If no functional unit saturation has occurred, the flags may be setto 0 or 1
by the MVC instruction, unlike the SAT bit in CSR.

The bits in SSR can be set by the MVC instruction or by a saturation in the associated functional unit. The
bits are cleared only by a reset or by the MVC instruction. The bits are not cleared by the occurrence of a
nonsaturating instruction.

Figure 2-25. Saturation Status Register (SSR)

31 16
’ Reserved ‘
R-0
15 5 4 3 2 1 0
\ Reserved M2 [w1 | s2 [st | 2 | 11|
R-0 RW-0 RMW-0 RW-0 RW-0 RW-0 RW-0

LEGEND: R = Readable by the MVC instruction; W = Writeable by the MVC instruction; -n = value after reset

Table 2-22. Saturation Status Register Field Descriptions

Bit Field Value | Description
31-6 |Reserved 0 Reserved. Read as 0.
5 M2 M2 unit.
Saturation did not occur on M2 unit.
Saturation occurred on M2 unit.
4 M1 M1 unit.
Saturation did not occur on M1 unit.
Saturation occurred on M1 unit.

54

CPU Data Paths and Control

Copyright © 2010, Texas Instruments Incorporated

SPRUFE8B-July 2010

13 TEXAS
INSTRUMENTS

www.ti.com Control Register File Extensions

Table 2-22. Saturation Status Register Field Descriptions (continued)

Bit Field Value | Description
3 S2 S2 unit.
Saturation did not occur on S2 unit.
1 Saturation occurred on S2 unit.
2 S1 S1 unit.
Saturation did not occur on S1 unit.
1 Saturation occurred on S1 unit.
1 L2 L2 unit.
Saturation did not occur on L2 unit.
1 Saturation occurred on L2 unit.
0 L1 L1 unit.

Saturation did not occur on L1 unit.

1 Saturation occurred on L1 unit.

2.9.14 Time Stamp Counter Registers (TSCL and TSCH)

The CPU contains a free running 64-bit counter that advances each CPU clock under normal operation.
The counter is accessed as two 32-bit read-only control registers, TSCL (Figure 2-26) and TSCH
(Figure 2-27).

Figure 2-26. Time Stamp Counter Register - Low Half (TSCL)
31 0
CPU clock count (32 LSBs of 64-bit value)
R-0
LEGEND: R = Readable by the MVC instruction; -n = value after reset

Figure 2-27. Time Stamp Counter Register - High Half (TSCH)
31 0
CPU clock count (32 MSBs of 64-bit value)
R-0
LEGEND: R = Readable by the MVC instruction; -n = value after reset

SPRUFE8B-July 2010 CPU Data Paths and Control 55

Copyright © 2010, Texas Instruments Incorporated

13 TEXAS
INSTRUMENTS

Control Register File Extensions www.ti.com

2.9.14.1 Initialization

The counter is cleared to 0 after reset, and counting is disabled.

2.9.14.2 Enabling Counting

The counter is enabled by writing to TSCL. The value written is ignored. Counting begins in the cycle after
the MVC instruction executes. If executed with the count disabled, the following code sequence shows the
timing of the count starting (assuming no stalls occur in the three cycles shown).

M/C BO, TSCL ; Start TSC
MVC TSCL, BO ; BO 0
WC TSCL, B1 ; Bl 1

2.9.143 Disabling Counting
Once enabled, counting cannot be disabled under program control. Counting is disabled in the following
cases:
» After exiting the reset state.
* When the CPU is fully powered down.

2.9.14.4 Reading the Counter

Reading the full 64-bit count takes two sequential MVC instructions. A read from TSCL causes the upper
32 bits of the count to be copied into TSCH. In normal operation, only this snapshot of the upper half of
the 64-bit count is available to the programmer. The value read will always be the value copied at the
cycle of the last MVC TSCL, reg instruction. If it is read with no TSCL reads having taken place since
reset, then the reset value of 0 is read.

CAUTION

Reading TSCL in the cycle before a cross path stall may give an inaccurate
value in TSCH.

When reading the full 64-bit value, it must be ensured that no interrupts are serviced between the two
MVC instructions if an ISR is allowed to make use of the time stamp counter. There is no way for an ISR
to restore the previous value of TSCH (snapshot) if it reads TSCL, since a new snapshot is performed.

Two methods for reading the 64-bit count value in an uninterruptible manner are shown in Example 2-1
and Example 2-2. Example 2-1 uses the fact that interrupts are automatically disabled in the delay slots of
a branch to prevent an interrupt from happening between the TSCL read and the TSCH read.

Example 2-2 accomplishes the same task by explicitly disabling interrupts.

Example 2-1. Code to Read the 64-Bit TSC Value in Branch Delay Slot

BNOP TSC _Read_Done, 3
MC TSCL, BO ; Read the low half first; high half copied to TSCH
wC TSCH, B1 ; Read the snapshot of the high half

TSC_Read_Done:

Example 2-2. Code to Read the 64-Bit TSC Value Using DINT/RINT

DI NT

| wC TSCL, BO ; Read the low half first; high half copied to TSCH
RI NT

| wC TSCH, B1 ; Read the snapshot of the high half

TSC_Read_Done:

56 CPU Data Paths and Control SPRUFE8B-July 2010

Copyright © 2010, Texas Instruments Incorporated

13 TEXAS
INSTRUMENTS

www.ti.com Control Register File Extensions

2.9.15 Task State Register (TSR)

The task state register (TSR) contains all of the status bits that determine or indicate the current execution
environment. TSR is saved in the event of an interrupt or exception to the ITSR or NTSR, respectively. All
bits are readable by the MVC instruction. The TSR is shown in Figure 2-28 and described in Table 2-23.
The SGIE bit in TSR is used by the DINT and RINT instructions to globally disable and reenable
interrupts.

The GIE and SGIE bits may be written in both User mode and Supervisor mode. The remaining bits all
have restrictions on how they are written. See Section 8.2.4.2 for more information.

The GIE bit in TSR is physically the same bit as the GIE bit in CSR. It is retained in CSR for compatibility
reasons, but placed in TSR so that it will be copied in the event of either an exception or an interrupt.

Figure 2-28. Task State Register (TSR)

31 16
‘ Reserved ‘
R-0
15 14 13 11 10 9 8 7 6 5 4 3 2 1 0
| B | sPLx | Reserved | EXC | INT [Rswd | cxM | Rsvd [DBGM | XEN | GEE [SGIE | GIE |
RO RO R-0 RICO RO RO RIW-0 RO RW-0 RMW-0 RSO RW-0 R/MW-0

LEGEND: R = Readable by the MVC instruction; W = Writeable in Supervisor mode; C = Clearable in Supervisor mode; S = Can be set in
Supervisor mode; -n = value after reset

Table 2-23. Task State Register (TSR) Field Descriptions

Bit Field Value | Description
31-16 | Reserved 0 Reserved. Read as 0.
15 1B Interrupts blocked. Not writable by the MVC instruction; set only by hardware.
0 Interrupts not blocked in previous cycle (interruptible point).

Interrupts were blocked in previous cycle.

14 SPLX SPLOOP executing. Not writable by the MVC instruction; set only by hardware.
0 Not currently executing SPLOOP

Currently executing SPLOOP

13-11 | Reserved 0 Reserved. Read as 0.

10 EXC Exception processing. Clearable by the MVC instruction in Supervisor mode. Not clearable by the MVC
instruction in User mode.

Not currently processing an exception.
Currently processing an exception.

9 INT Interrupt processing. Not writable by the MVC instruction.
Not currently processing an interrupt.
Currently processing an interrupt.

8 Reserved 0 Reserved. Read as 0.

7-6 CXM 0-3h | Current execution mode. Not writable by the MVC instruction; these bits reflect the current execution
mode of the execute pipeline. CXM is set to 1 when you begin executing the first instruction in User
mode. See Chapter 8 for more information.

0 Supervisor mode
1h User mode
2h-3h | Reserved (an attempt to set these values is ignored)

Reserved 0 Reserved. Read as 0.

DBGM Emulator debug mask. Writable in Supervisor and User mode. Writable by emulator.
Enables emulator capabilities.

Disables emulator capabilities.

SPRUFE8B-July 2010 CPU Data Paths and Control 57

Copyright © 2010, Texas Instruments Incorporated

13 TEXAS
INSTRUMENTS

Control Register File Extensions for Floating-Point Operations www.ti.com

Table 2-23. Task State Register (TSR) Field Descriptions (continued)

Bit

Field

Value

Description

XEN

Maskable exception enable. Writable only in Supervisor mode.
Disables all maskable exceptions.
Enables all maskable exceptions.

GEE

Global exception enable. Can be set to 1 only in Supervisor mode. Once set, cannot be cleared except
by reset.

Disables all exceptions except the reset interrupt.
Enables all exceptions.

SGIE

Saved global interrupt enable. Contains previous state of GIE bit after execution of a DINT instruction.
Writable in Supervisor and User mode.

Global interrupts remain disabled by the RINT instruction.
Global interrupts are enabled by the RINT instruction.

GIE

Global interrupt enable. Same physical bit as the GIE bit in the control status register (CSR). Writable in
Supervisor and User mode. See Section 5.2 for details on how the GIE bit affects interruptibility.

Disables all interrupts except the reset interrupt and NMI (nonmaskable interrupt).
Enables all interrupts.

2.10 Control Register File Extensions for Floating-Point Operations

The C674x DSP has three additional configuration registers to support floating-point operations. The
registers specify the desired floating-point rounding mode for the .L and .M units. They also contain fields
to warn if srcl and src2 are NaN or denormalized numbers, and if the result overflows, underflows, is
inexact, infinite, or invalid. There are also fields to warn if a divide by 0 was performed, or if a compare
was attempted with a NaN source. Table 2-24 lists the additional registers used. The OVER, UNDER,
INEX, INVAL, DENn, NANnN, INFO, UNORD and DIVO bits within these registers will not be modified by a
conditional instruction whose condition is false.

Table 2-24. Control Register File Extensions for Floating-Point Operations

Acronym Register Name Section
FADCR Floating-point adder configuration register Section 2.10.1
FAUCR Floating-point auxiliary configuration register Section 2.10.2
FMCR Floating-point multiplier configuration register Section 2.10.3

58 CPU Data Paths and Control SPRUFE8B-July 2010

Copyright © 2010, Texas Instruments Incorporated

13 TEXAS
INSTRUMENTS

www.ti.com Control Register File Extensions for Floating-Point Operations

2.10.1 Floating-Point Adder Configuration Register (FADCR)

The floating-point adder configuration register (FADCR) contains fields that specify underflow or overflow,
the rounding mode, NaNs, denormalized numbers, and inexact results for instructions that use the .L
functional units. FADCR has a set of fields specific to each of the .L units: .L2 uses bits 31-16 and .L1
uses bits 15-0. FADCR is shown in Figure 2-29 and described in Table 2-25.

NOTE: The ADDSP, ADDDP, SUBSP, and SUBDP instructions executing in the .S functional unit
use the rounding mode from and set the warning bits in FADCR. The warning bits in FADCR
are the logical-OR of the warnings produced on the .L functional unit and the warnings
produced by the ADDSP/ADDDP/SUBSP/SUBDP instructions on the .S functional unit (but
not other instructions executing on the .S functional unit).

Figure 2-29. Floating-Point Adder Configuration Register (FADCR)

31 27 26 25 24 23 2 21 20 19 18 17 16
] Reserved | RMODE [UNDER][INEX | OVER | INFO [INVAL | DEN2 | DEN1 [NAN2 | NANL |
R-0 RIW-0 RW-0 RMW-0 RMW-0 RMW-0 RW-0 RW-0 RW-0 RW-0 R/MW-0

15 11 10 9 8 7 6 5 4 3 2 1 0
\ Reserved | RMODE [UNDER| INEX | OVER | INFO | INVAL | DEN2 | DEN1 | NAN2 | NANL |
R-0 RIW-0 RW-0 RMW-0 RMW-0 RMW-0 RW-0 RW-0 RW-0 RW-0 R/MW-0

LEGEND: R = Readable by the MVC instruction; W = Writeable by the MVC instruction; -n = value after reset

Table 2-25. Floating-Point Adder Configuration Register (FADCR) Field Descriptions

Bit Field Value | Description
31-27 | Reserved 0 Reserved. The reserved bit location is always read as 0. A value written to this field has no effect.
26-25 | RMODE 0-3h | Rounding mode select for .L2.
0 Round toward nearest representable floating-point number

1h Round toward 0 (truncate)

2h Round toward infinity (round up)

3h Round toward negative infinity (round down)
24 UNDER Result underflow status for .L2.

0 Result does not underflow.

Result underflows.

23 INEX Inexact results status for .L2.

Result differs from what would have been computed had the exponent range and precision been
unbounded; never set with INVAL.

22 OVER Result overflow status for .L2.
Result does not overflow.

Result overflows.
21 INFO Signed infinity for .L2.
Result is not signed infinity.

Result is signed infinity.

20 INVAL
A signed NaN (SNaN) is not a source.
A signed NaN (SNaN) is a source. NaN is a source in a floating-point to integer conversion or when
infinity is subtracted from infinity.

19 DEN2 Denormalized number select for .L2 src2.

0 src2 is not a denormalized number.
src2 is a denormalized number.
SPRUFE8B-July 2010 CPU Data Paths and Control 59

Copyright © 2010, Texas Instruments Incorporated

13 TEXAS
INSTRUMENTS

Control Register File Extensions for Floating-Point Operations www.ti.com

Table 2-25. Floating-Point Adder Configuration Register (FADCR) Field Descriptions (continued)

Bit

Field

Value

Description

18

DEN1

Denormalized number select for .L2 srcl.
srcl is not a denormalized number.
srcl is a denormalized number.

17

NAN2

NaN select for .L2 src2.
src2 is not NaN.
src2 is NaN.

16

NAN1

NaN select for .L2 srcl.
srcl is not NaN.
srcl is NaN.

15-11

Reserved

Reserved. The reserved bit location is always read as 0. A value written to this field has no effect.

10-9

RMODE

1h
2h
3h

Rounding mode select for .L1.

Round toward nearest representable floating-point number
Round toward 0 (truncate)

Round toward infinity (round up)

Round toward negative infinity (round down)

UNDER

Result underflow status for .L1.
Result does not underflow.
Result underflows.

INEX

Inexact results status for .L1.

Result differs from what would have been computed had the exponent range and precision been
unbounded; never set with INVAL.

OVER

Result overflow status for .L1.
Result does not overflow.
Result overflows.

INFO

Signed infinity for .L1.
Result is not signed infinity.
Result is signed infinity.

INVAL

A signed NaN (SNaN) is not a source.

A signed NaN (SNaN) is a source. NaN is a source in a floating-point to integer conversion or when
infinity is subtracted from infinity.

DEN2

Denormalized number select for .L1 src2.
src2 is not a denormalized number.
src2 is a denormalized number.

DEN1

Denormalized number select for .L1 srcl.
srcl is not a denormalized number.
srcl is a denormalized number.

NAN2

NaN select for .L1 src2.
src2 is not NaN.
src2 is NaN.

NAN1

NaN select for .L1 srcl.
srcl is not NaN.
srcl is NaN.

60

CPU Data Paths and Control SPRUFE8B-July 2010

Copyright © 2010, Texas Instruments Incorporated

13 TEXAS
INSTRUMENTS

www.ti.com Control Register File Extensions for Floating-Point Operations

2.10.2 Floating-Point Auxiliary Configuration Register (FAUCR)

The floating-point auxiliary register (FAUCR) contains fields that specify underflow or overflow, the
rounding mode, NaNs, denormalized numbers, and inexact results for instructions that use the .S
functional units. FAUCR has a set of fields specific to each of the .S units: .S2 uses bits 31-16 and .S1
uses bits 15-0. FAUCR is shown in Figure 2-30 and described in Table 2-26.

NOTE: The ADDSP, ADDDP, SUBSP, and SUBDP instructions executing in the .S functional unit
use the rounding mode from and set the warning bits in the floating-point adder configuration
register (FADCR). The warning bits in FADCR are the logical-OR of the warnings produced
on the .L functional unit and the warnings produced by the ADDSP/ADDDP/SUBSP/SUBDP
instructions on the .S functional unit (but not other instructions executing on the .S functional
unit).

Figure 2-30. Floating-Point Auxiliary Configuration Register (FAUCR)

31 27 26 25 24 23 22 21 20 19 18 17 16
\ Reserved | DIVO [UNORD | UND | INEX | OVER | INFO [INVAL | DEN2 | DEN1 | NAN2 | NAN1 |
R-0 RW-0 RW-0 RMW-0 RW-0 RMW-0 RMW-0 RMW-0 RMW-0 RW-0 RMW-0 RW-0

15 11 10 9 8 7 6 5 4 3 2 1 0
] Reserved [DIvo [UNORD | UND | INEX [OVER | INFO [INVAL [DEN2 | DEN1 [NAN2 | NAN1 |
R-0 RW-0 RW-0 RMW-0 RW-0 RMW-0 RW-0 RMW-0 RMW-0 RW-0 RMW-0 RAW-0

LEGEND: R = Readable by the MVC instruction; W = Writeable by the MVC instruction; -n = value after reset

Table 2-26. Floating-Point Auxiliary Configuration Register (FAUCR) Field Descriptions

Bit Field Value | Description
31-27 | Reserved 0 Reserved. The reserved bit location is always read as 0. A value written to this field has no effect.
26 DIVO Source to reciprocal operation for .S2.

0 is not source to reciprocal operation.
0 is source to reciprocal operation.

25 UNORD Source to a compare operation for .S2

NaN is not a source to a compare operation.
NaN is a source to a compare operation.

24 UND Result underflow status for .S2.

Result does not underflow.

Result underflows.

23 INEX Inexact results status for .S2.

Result differs from what would have been computed had the exponent range and precision been
unbounded; never set with INVAL.

22 OVER Result overflow status for .S2.
Result does not overflow.

Result overflows.
21 INFO Signed infinity for .S2.
Result is not signed infinity.

Result is signed infinity.

20 INVAL
A signed NaN (SNaN) is not a source.
A signed NaN (SNaN) is a source. NaN is a source in a floating-point to integer conversion or when
infinity is subtracted from infinity.
SPRUFE8B-July 2010 CPU Data Paths and Control 61

Copyright © 2010, Texas Instruments Incorporated

13 TEXAS
INSTRUMENTS

Control Register File Extensions for Floating-Point Operations www.ti.com

Table 2-26. Floating-Point Auxiliary Configuration Register (FAUCR) Field Descriptions (continued)

Bit

Field

Value

Description

19

DEN2

Denormalized number select for .S2 src2.
src2 is not a denormalized number.
src2 is a denormalized number.

18

DEN1

Denormalized number select for .S2 srcl.
srcl is not a denormalized number.
srcl is a denormalized number.

17

NAN2

NaN select for .S2 src2.
src2 is not NaN.
src2 is NaN.

16

NAN1

NaN select for .S2 srcl.
srcl is not NaN.
srcl is NaN.

15-11

Reserved

Reserved. The reserved bit location is always read as 0. A value written to this field has no effect.

10

DIVO

Source to reciprocal operation for .S1.
0 is not source to reciprocal operation.
0 is source to reciprocal operation.

UNORD

Source to a compare operation for .S1
NaN is not a source to a compare operation.
NaN is a source to a compare operation.

UND

Result underflow status for .S1.
Result does not underflow.
Result underflows.

INEX

Inexact results status for .S1.

Result differs from what would have been computed had the exponent range and precision been
unbounded; never set with INVAL.

OVER

Result overflow status for .S1.
Result does not overflow.
Result overflows.

INFO

Signed infinity for .S1.
Result is not signed infinity.
Result is signed infinity.

INVAL

A signed NaN (SNaN) is not a source.

A signed NaN (SNaN) is a source. NaN is a source in a floating-point to integer conversion or when
infinity is subtracted from infinity.

DEN2

Denormalized number select for .S1 src2.
src2 is not a denormalized number.
src2 is a denormalized number.

DEN1

Denormalized number select for .S1 srcl.
srcl is not a denormalized number.
srcl is a denormalized number.

NAN2

NaN select for .S1 src2.
src2 is not NaN.
src2 is NaN.

NAN1

NaN select for .S1 srcl.
srcl is not NaN.

srcl is NaN.

62

CPU Data Paths and Control SPRUFE8B-July 2010

Copyright © 2010, Texas Instruments Incorporated

13 TEXAS
INSTRUMENTS

www.ti.com Control Register File Extensions for Floating-Point Operations

2.10.3 Floating-Point Multiplier Configuration Register (FMCR)

The floating-point multiplier configuration register (FMCR) contains fields that specify underflow or
overflow, the rounding mode, NaNs, denormalized numbers, and inexact results for instructions that use
the .M functional units. FMCR has a set of fields specific to each of the .M units: .M2 uses bits 31-16 and
.M1 uses bits 15-0. FMCR is shown in Figure 2-31 and described in Table 2-27.

Figure 2-31. Floating-Point Multiplier Configuration Register (FMCR)

31 27 26 25 24 23 2 21 20 19 18 17 16
\ Reserved | RMODE [UNDER | INEX | OVER | INFO | INVAL | DEN2 | DEN1 | NAN2 | NANL |
R-0 RIW-0 RW-0 RMW-0 RMW-0 RMW-0 RW-0 RW-0 RW-0 RW-0 R/MW-0

15 11 10 9 8 7 6 5 4 3 2 1 0
] Reserved | RMODE [UNDER| INEX | OVER | INFO [INVAL [DEN2 | DEN1 [NAN2 | NANL |
R-0 RIW-0 RW-0 RMW-0 RMW-0 RMW-0 RW-0 RW-0 RW-0 RW-0 R/MW-0

LEGEND: R = Readable by the MVC instruction; W = Writeable by the MVC instruction; -n = value after reset

Table 2-27. Floating-Point Multiplier Configuration Register (FMCR) Field Descriptions

Bit Field Value | Description
31-27 | Reserved 0 Reserved. The reserved bit location is always read as 0. A value written to this field has no effect.
26-25 | RMODE 0-3h | Rounding mode select for .M2.
0 Round toward nearest representable floating-point number

1h Round toward 0 (truncate)

2h Round toward infinity (round up)

3h Round toward negative infinity (round down)
24 UNDER Result underflow status for .M2.

0 Result does not underflow.

Result underflows.

23 INEX Inexact results status for .M2.

Result differs from what would have been computed had the exponent range and precision been
unbounded; never set with INVAL.

22 OVER Result overflow status for .M2.
Result does not overflow.

1 Result overflows.
21 INFO Signed infinity for .M2.
Result is not signed infinity.

1 Result is signed infinity.

20 INVAL
A signed NaN (SNaN) is not a source.

1 A signed NaN (SNaN) is a source. NaN is a source in a floating-point to integer conversion or when
infinity is subtracted from infinity.

19 DEN2 Denormalized number select for .M2 src2.
0 src2 is not a denormalized number.
src2 is a denormalized number.

18 DEN1 Denormalized number select for .M2 srcl.
0 srcl is not a denormalized number.

srcl is a denormalized number.

17 NAN2 NaN select for .M2 src2.

0 src2 is not NaN.

src2 is NaN.

SPRUFE8B-July 2010 CPU Data Paths and Control 63

Copyright © 2010, Texas Instruments Incorporated

13 TEXAS
INSTRUMENTS

Control Register File Extensions for Floating-Point Operations www.ti.com

Table 2-27. Floating-Point Multiplier Configuration Register (FMCR) Field Descriptions (continued)

Bit

Field

Value

Description

16

NAN1

NaN select for .M2 srcl.
srcl is not NaN.
srcl is NaN.

15-11

Reserved

Reserved. The reserved bit location is always read as 0. A value written to this field has no effect.

10-9

RMODE

1h
2h
3h

Rounding mode select for .M1.

Round toward nearest representable floating-point number
Round toward 0 (truncate)

Round toward infinity (round up)

Round toward negative infinity (round down)

UNDER

Result underflow status for .M1.
Result does not underflow.
Result underflows.

INEX

Inexact results status for .M1.

Result differs from what would have been computed had the exponent range and precision been
unbounded; never set with INVAL.

OVER

Result overflow status for .M1.
Result does not overflow.
Result overflows.

INFO

Signed infinity for .M1.
Result is not signed infinity.
Result is signed infinity.

INVAL

A signed NaN (SNaN) is not a source.

A signed NaN (SNaN) is a source. NaN is a source in a floating-point to integer conversion or when
infinity is subtracted from infinity.

DEN2

Denormalized number select for .M1 src2.
src2 is not a denormalized number.
src2 is a denormalized number.

DEN1

Denormalized number select for .M1 srcl.
srcl is not a denormalized number.
srcl is a denormalized number.

NAN2

NaN select for .M1 src2.
src2 is not NaN.
src2 is NaN.

NAN1

NaN select for .M1 srcl.
srcl is not NaN.

srcl is NaN.

64

CPU Data Paths and Control SPRUFE8B-July 2010

Copyright © 2010, Texas Instruments Incorporated

. Chapter 3
I3 TEXAS SPRUFESB—July 2010

INSTRUMENTS

Instruction Set

This chapter describes the assembly language instructions of the TMS320C674x DSP. Also described are
parallel operations, conditional operations, resource constraints, and addressing modes.

The C674x DSP uses all of the instructions available to the TMS320C62x, TMS320C64x, TMS320C64x+,
TMS320C67x%, and TMS320C67x+ DSPs. The C674x DSP instructions include 8-bit and 16-bit extensions,
nonaligned word loads and stores, data packing/unpacking operations.

Topic Page
3.1 Instruction Operation and Execution NOtatiONSoeieieiiiiiiiiinieieieieieaeieieenanens 66
3.2 Instruction Syntax and Opcode NOtAtIONSc.euiuiieiniiiiit et eeaeeaees 68
3.3 Overview of IEEE Standard Single- and Double-Precision Formatscccceeeun... 70
G I T =] () £ PP 73
ST &= U= | =) B 0 L= = o g P 74
3.6 ConditioNal OPEratiONSeeiuieeeuee ettt een e e ettt e e eaenan e e e e aeaeeaenananens 77
3.7 SPMASKEA OPEIaAtiONS .uieieitieeeueueueuanieiereieeeeaeaesaa e e e e eeaeaeaenserarereaeaeaeaensnss 77
3.8 RESOUICE CONSIIAINTS 1uiuiuitititieiiiiaie e ie et e s e s rara e s e e s e eaeasararere s e eenenenanss 78
3.9 AdAreSSIiNG MOOES uiuiiitiiiiiiititi ettt a s et e et e e e et aas 87
3.10 Compact Instructions 0N the CPU ...t et e e e e e 91
3.11 Instruction CompatiDilitycocieiiiii e 97
3.12 INStruCtioN DESCIIPLIONS .vueiineieueuinen ettt e e een e e ee e e e e e e eaeaeneaseenreaeaeenenenenanens 98

SPRUFE8B-July 2010 Instruction Set 65

Copyright © 2010, Texas Instruments Incorporated

13 TEXAS

INSTRUMENTS
Instruction Operation and Execution Notations www.ti.com
3.1 Instruction Operation and Execution Notations
Table 3-1 explains the symbols used in the instruction descriptions.
Table 3-1. Instruction Operation and Execution Notations
Symbol Meaning
abs(x) Absolute value of x
and Bitwise AND
-a Perform 2s-complement subtraction using the addressing mode defined by the AMR
+a Perform 2s-complement addition using the addressing mode defined by the AMR
b, Select bit i of source/destination b
bit_count Count the number of bits that are 1 in a specified byte
bit_reverse Reverse the order of bits in a 32-bit register
byte0 8-bit value in the least-significant byte position in 32-bit register (bits 0-7)
bytel 8-bit value in the next to least-significant byte position in 32-bit register (bits 8-15)
byte2 8-bit value in the next to most-significant byte position in 32-bit register (bits 16-23)
byte3 8-bit value in the most-significant byte position in 32-bit register (bits 24-31)
bv2 Bit vector of two flags for s2 or u2 data type
bv4 Bit vector of four flags for s4 or u4 data type
by , Selection of bits y through z of bit string b
cond Check for either creg equal to 0 or creg not equal to 0
creg 3-bit field specifying a conditional register, see Section 3.6
cstn n-bit constant field (for example, cst5)
dint 64-bit integer value (two registers)
dp Double-precision floating-point register value
dst_e Isb32 of 64-hit dst (placed in even-numbered register of a 64-bit register pair)
dst_h msb8 of 40-bit dst (placed in odd-numbered register of 64-bit register pair)
dst_| Isb32 of 40-hit dst (placed in even-numbered register of a 64-bit register pair)
dst o msb32 of 64-bit dst (placed in odd-numbered register of 64-bit register pair)
dws4 Four packed signed 16-bit integers in a 64-bit register pair
dwu4 Four packed unsigned 16-bit integers in a 64-bit register pair
gmpy Galois Field Multiply
i2 Two packed 16-bit integers in a single 32-bit register
i4 Four packed 8-bit integers in a single 32-bit register
int 32-bit integer value
ImbO(x) Leftmost 0 bit search of x
Imb1(x) Leftmost 1 bit search of x
long 40-bit integer value
Isbn or LSBn n least-significant bits (for example, Isb16)
msbn or MSBn n most-significant bits (for example, msh16)
nop No operation
norm(x) Leftmost nonredundant sign bit of x
not Bitwise logical complement
op Opfields
or Bitwise OR
R Any general-purpose register
ROTL Rotate left
sat Saturate
shyte0 Signed 8-bit value in the least-significant byte position in 32-bit register (bits 0-7)
shytel Signed 8-bit value in the next to least-significant byte position in 32-bit register (bits 8-15)
shyte2 Signed 8-bit value in the next to most-significant byte position in 32-bit register (bits 16-23)
66 Instruction Set SPRUFE8B-July 2010

Copyright © 2010, Texas Instruments Incorporated

13 TEXAS
INSTRUMENTS

www.ti.com Instruction Operation and Execution Notations

Table 3-1. Instruction Operation and Execution Notations (continued)

Symbol Meaning

sbyte3 Signed 8-bit value in the most-significant byte position in 32-bit register (bits 24-31)
scstn n-bit signed constant field

sdint Signed 64-bit integer value (two registers)

se Sign-extend

sint Signed 32-bit integer value

slong Signed 40-bit integer value

sllong Signed 64-bit integer value

slsb16 Signed 16-bit integer value in lower half of 32-bit register

smsb16 Signed 16-bit integer value in upper half of 32-bit register

sp Single-precision floating-point register value that can optionally use cross path

srcl_e or src2_e
srcl_h or src2_h

srcl_| or src2_|

srcl_o or src2_o

Ish32 of 64-bit src (placed in even-numbered register of a 64-bit register pair)
msb8 of 40-bit src (placed in odd-numbered register of 64-bit register pair)
Isb32 of 40-bit src (placed in even-numbered register of a 64-bit register pair)
msb32 of 64-bit src (placed in odd-numbered register of 64-bit register pair)

s2 Two packed signed 16-bit integers in a single 32-bit register

s4 Four packed signed 8-bit integers in a single 32-bit register

-S Perform 2s-complement subtraction and saturate the result to the result size, if an overflow occurs
+s Perform 2s-complement addition and saturate the result to the result size, if an overflow occurs
ubyteO Unsigned 8-bit value in the least-significant byte position in 32-bit register (bits 0-7)

ubytel Unsigned 8-bit value in the next to least-significant byte position in 32-bit register (bits 8-15)
ubyte2 Unsigned 8-bit value in the next to most-significant byte position in 32-bit register (bits 16-23)
ubyte3 Unsigned 8-bit value in the most-significant byte position in 32-bit register (bits 24-31)

ucstn n-bit unsigned constant field (for example, ucst5)

uint Unsigned 32-bit integer value

ulong Unsigned 40-bit integer value

ullong Unsigned 64-bit integer value

ulsb16 Unsigned 16-bit integer value in lower half of 32-bit register

umsb16 Unsigned 16-bit integer value in upper half of 32-bit register

u2 Two packed unsigned 16-bit integers in a single 32-bit register

usd Four packed unsigned 8-bit integers in a single 32-bit register

X clear b,e Clear a field in x, specified by b (beginning bit) and e (ending bit)

x extl,r Extract and sign-extend a field in x, specified by | (shift left value) and r (shift right value)

x extu l,r Extract an unsigned field in x, specified by | (shift left value) and r (shift right value)

x setb,e Set field in x to all 1s, specified by b (beginning bit) and e (ending bit)

xdp Double-precision floating-point register value that can optionally use cross path

xint 32-bit integer value that can optionally use cross path

xor Bitwise exclusive-ORs

xsint Signed 32-bit integer value that can optionally use cross path

xslsb16 Signed 16 LSB of register that can optionally use cross path

xsmsh16 Signed 16 MSB of register that can optionally use cross path

Xsp Single-precision floating-point register value that can optionally use cross path

Xs2 Two packed signed 16-bit integers in a single 32-bit register that can optionally use cross path
xs4 Four packed signed 8-bit integers in a single 32-bit register that can optionally use cross path
xuint Unsigned 32-bit integer value that can optionally use cross path

xulsb16 Unsigned 16 LSB of register that can optionally use cross path

xumsb16 Unsigned 16 MSB of register that can optionally use cross path

xu2 Two packed unsigned 16-bit integers in a single 32-bit register that can optionally use cross path

SPRUFE8B-July 2010

Instruction Set

Copyright © 2010, Texas Instruments Incorporated

67

Instruction Syntax and Opcode Notations

13 TEXAS
INSTRUMENTS

www.ti.com

Table 3-1. Instruction Operation and Execution Notations (continued)

Symbol Meaning

xu4d Four packed unsigned 8-bit integers in a single 32-bit register that can optionally use cross path
— Assignment

+ Addition

++ Increment by 1

X Multiplication

- Subtraction

== Equal to

> Greater than

>= Greater than or equal to

< Less than

<= Less than or equal to

<< Shift left

>> Shift right

>>s Shift right with sign extension
>>7 Shift right with a zero fill

~ Logical inverse

& Logical AND

3.2 Instruction Syntax and Opcode Notations

Table 3-2 explains the syntaxes and opcode fields used in the instruction descriptions.

Table 3-2. Instruction Syntax and Opcode Notations

Symbol Meaning

baseR base address register

creg 3-hbit field specifying a conditional register, see Section 3.6

cst constant

csta constant a

cstb constant b

cstn n-bit constant field

dst destination

dw doubleword; 0 = word, 1 = doubleword

feyc SPLOOP fetch cycle

fstg SPLOOP fetch stage

h MVK or MVKH instruction

i, bit n of the constant ii

Id/st load or store; 0 = store, 1 = load

mode addressing mode, see Section 3.9

na nonaligned; O = aligned, 1 = nonaligned

N3 3-bit field

offsetR register offset

op opfield; field within opcode that specifies a unique instruction

op, bit n of the opfield

p parallel execution; O = next instruction is not executed in parallel, 1 = next instruction is executed in
parallel

ptr offset from either A4-A7 or B4-B7 depending on the value of the s bit. The ptr field is the 2

least-significant bits of the src2 (baseR) field—bit 2 of register address is forced to 1.

68 Instruction Set

Copyright © 2010, Texas Instruments Incorporated

SPRUFE8B-July 2010

13 TEXAS

INSTRUMENTS
www.ti.com Instruction Syntax and Opcode Notations
Table 3-2. Instruction Syntax and Opcode Notations (continued)
Symbol Meaning
r LDDW/LDNDW/LDNW instruction
rsv reserved
s side A or B for destination; 0 = side A, 1 = side B.
sc scaling mode; 0 = nonscaled, offsetR/ucst5 is not shifted; 1 = scaled, offsetR/ucst5 is shifted
scstn n-bit signed constant field
scst, bit n of the signed constant field
sn sign
src source
srcl source 1
src2 source 2
stg, bit n of the constant stg
sz data size select; 0 = primary size, 1 = secondary size (see Section 3.10.2.2)
t side of source/destination (src/dst) register; 0 = side A, 1 = side B
ucstn n-bit unsigned constant field
ucst, bit n of the unsigned constant field
unit unit decode
X cross path for src2; 0 = do not use cross path, 1 = use cross path
y .D1 or .D2 unit; 0 = .D1 unit, 1 = .D2 unit
z test for equality with zero or nonzero

3.2.1 32-Bit Opcode Maps
The 32-bit opcodes are mapped in Appendix C through Appendix H.

3.2.2 16-Bit Opcode Maps

The 16-bit opcodes used for compact instructions are mapped in Appendix C through Appendix H. See
Section 3.10 for more information about compact instructions.

SPRUFE8B-July 2010 Instruction Set 69

Copyright © 2010, Texas Instruments Incorporated

13 TEXAS

INSTRUMENTS
Overview of IEEE Standard Single- and Double-Precision Formats www.ti.com
3.3 Overview of IEEE Standard Single- and Double-Precision Formats
Floating-point operands are classified as single-precision (SP) and double-precision (DP). Single-precision
floating-point values are 32-bit values stored in a single register. Double-precision floating-point values are
64-bit values stored in a register pair. The register pair consists of consecutive even and odd registers
from the same register file. The 32 least-significant-bits are loaded into the even register; the 32
most-significant-bits containing the sign bit and exponent are loaded into the next register (that is always
the odd register). The register pair syntax places the odd register first, followed by a colon, then the even
register (that is, A1:A0Q, B1:B0, A3:A2, B3:B2, etc.).
Instructions that use DP sources fall in two categories: instructions that read the upper and lower 32-bit
words on separate cycles, and instructions that read both 32-bit words on the same cycle. All instructions
that produce a double-precision result write the low 32-bit word one cycle before writing the high 32-bit
word. If an instruction that writes a DP result is followed by an instruction that uses the result as its DP
source and it reads the upper and lower words on separate cycles, then the second instruction can be
scheduled on the same cycle that the high 32-bit word of the result is written. The lower result is written on
the previous cycle. This is because the second instruction reads the low word of the DP source one cycle
before the high word of the DP source.
IEEE floating-point numbers consist of normal numbers, denormalized numbers, NaNs (not a number),
and infinity numbers. Denormalized numbers are nonzero numbers that are smaller than the smallest
nonzero normal number. Infinity is a value that represents an infinite floating-point number. NaN values
represent results for invalid operations, such as (+infinity + (-infinity)).
Normal single-precision values are always accurate to at least six decimal places, sometimes up to nine
decimal places. Normal double-precision values are always accurate to at least 15 decimal places,
sometimes up to 17 decimal places.
Table 3-3 shows notations used in discussing floating-point numbers.
Table 3-3. IEEE Floating-Point Notations
Symbol Meaning
s Sign bit
e Exponent field
f Fraction (mantissa) field
X Can have value of 0 or 1 (don't care)
NaN Not-a-Number (SNaN or QNaN)
SNaN Signal NaN
QNaN Quiet NaN
NaN_out QNaN with all bits in the f field = 1
Inf Infinity
LFPN Largest floating-point number
SFPN Smallest floating-point number
LDFPN Largest denormalized floating-point number
SDFPN Smallest denormalized floating-point number
signed Inf +infinity or -infinity
signed NaN_out NaN_out with s =0 or 1
70 Instruction Set SPRUFE8B-July 2010

Copyright © 2010, Texas Instruments Incorporated

13 TEXAS
INSTRUMENTS

www.ti.com

Overview of IEEE Standard Single- and Double-Precision Formats

3.3.1 Single-Precision Formats

Figure 3-1 shows the fields of a single-precision floating-point number represented within a 32-bit register.

Figure 3-1. Single-Precision Floating-Point Fields

31 30 23 22 0
Ls | e | f
LEGEND: s = sign bit (0O = positive, 1 = negative); e = 8-bit exponent (0 < e < 255);
f=23-bit fraction (0 <f<1x2t+1x22+ . +1x2%0r0<f<((2%)-1)/(2%)
The floating-point fields represent floating-point numbers within two ranges: normalized (e is between 0O
and 255) and denormalized (e is 0). The following formulas define how to translate the s, e, and f fields
into a single-precision floating-point number.
Normalized: -18 x 2@ 120 % 1 f 0<e<255
Denormalized (Subnormal): 215 x 2126 x O f e = 0; f is nonzero
Table 3-4 shows the s, e, and f values for special single-precision floating-point numbers.
Table 3-4. Special Single-Precision Values
Symbol Sign (s) Exponent (e) Fraction (f)
+0 0 0 0
-0 1 0 0
+Inf 0 255 0
-Inf 1 255 0
NaN X 255 nonzero
QNaN X 255 1xx..xX
SNaN X 255 Oxx..x and nonzero
Table 3-5 shows hexadecimal and decimal values for some single-precision floating-point numbers.
Table 3-5. Hexadecimal and Decimal Representation for Selected
Single-Precision Values
Symbol Hex Value Decimal Value
NaN_out 7FFF FFFF QNaN
0 0000 0000 0.0
-0 8000 0000 -0.0
1 3F80 0000 1.0
2 4000 0000 2.0
LFPN 7F7F FFFF 3.40282347e+38
SFPN 0080 0000 1.17549435e-38
LDFPN 007F FFFF 1.17549421e-38
SDFPN 0000 0001 1.40129846e-45
SPRUFE8B-July 2010 Instruction Set 71

Copyright © 2010, Texas Instruments Incorporated

13 TEXAS
INSTRUMENTS

Overview of IEEE Standard Single- and Double-Precision Formats www.ti.com

3.3.2 Double-Precision Formats

Figure 3-2 shows the fields of a double-precision floating-point number represented within a pair of 32-bit
registers.

Figure 3-2. Double-Precision Floating-Point Fields
31 30 20 19 0 31 0
Ls] e | f | f

‘ Odd register ‘ Even register

LEGEND: s = sign bit (0 = positive, 1 = negative); e = 11-bit exponent (0 < e < 2047);
f=52-bit fraction (0 <f<1x21+1x22+ . +1x2%0r0<f<((2%)-1)/(2%)

The floating-point fields represent floating-point numbers within two ranges: normalized (e is between 0
and 2047) and denormalized (e is 0). The following formulas define how to translate the s, e, and f fields
into a double-precision floating-point number.

Normalized: 218 x 261023 % 1 f 0 < e <2047

Denormalized (Subnormal): 218 x 271022 % O f e = 0; fis nonzero

Table 3-6 shows the s, e, and f values for special double-precision floating-point numbers.

Table 3-6. Special Double-Precision Values

Symbol Sign (s) Exponent (e) Fraction (f)

+0 0 0 0

-0 1 0 0

+Inf 0 2047 0

-Inf 1 2047 0

NaN X 2047 nonzero

QNaN X 2047 IxX..X

SNaN X 2047 0xx..x and nonzero

Table 3-7 shows hexadecimal and decimal values for some double-precision floating-point numbers.

Table 3-7. Hexadecimal and Decimal Representation for Selected
Double-Precision Values

Symbol Hex Value Decimal Value

NaN_out 7FFF FFFF FFFF FFFF QNaN

0 0000 0000 0000 0000 0.0

-0 8000 0000 0000 0000 -0.0

1 3FF0 0000 0000 0000 1.0

2 4000 0000 0000 0000 2.0

LFPN 7FEF FFFF FFFF FFFF 1.7976931348623157e+308

SFPN 0010 0000 0000 0000 2.2250738585072014e-308

LDFPN 000F FFFF FFFF FFFF 2.2250738585072009e-308

SDFPN 0000 0000 0000 0001 4.9406564584124654e-324
72 Instruction Set SPRUFE8B-July 2010

Copyright © 2010, Texas Instruments Incorporated

I3 TEXAS
INSTRUMENTS
www.ti.com Delay Slots
3.4 Delay Slots
The execution of floating-point instructions can be defined in terms of delay slots and functional unit
latency. The number of delay slots is equivalent to the number of additional cycles required after the
source operands are read for the result to be available for reading. For a single-cycle type instruction,
operands read in cycle i produce a result that can be read in cycle i + 1. For a 4-cycle instruction,
operands read in cycle i produce a result that can be read in cycle i + 4. Table 3-8 shows the number of
delay slots associated with each type of instruction.
The functional unit latency is equivalent to the number of cycles that must pass before the functional unit
can start executing the next instruction. The double-precision floating-point addition, subtraction,
multiplication, compare, and the 32-bit integer multiply instructions have a functional unit latency that is
greater than 1. Most instructions have a functional unit latency of 1, meaning that the next instruction can
begin execution in cycle i + 1. The ADDDP instruction has a functional unit latency of 2. Operands are
read on cycle i and cycle i + 1. Therefore, a new instruction cannot begin until cycle i + 2, rather than
cyclei + 1. ADDDP produces a result that can be read in cycle i + 7, because it has six delay slots.
Table 3-8. Delay Slot and Functional Unit Latency
Functional Unit
Instruction Type Delay Slots Latency Read Cycles @ Write Cycles @
Single cycle 0 1 i i
2-cycle DP 1 1 i i,i+1
DP compare 1 2 ,i+1 i+1
4-cycle 3 1 i i+3
INTDP 4 1 [i+3,i+4
Load 4 1 i i,i+4@
MPYSP2DP 4 2 [i+3,i+4
ADDDP/SUBDP 6 2 ii+1 i+5,i+6
MPYSPDP 6 3 ii+1 i+5,i+6
MPYI 8 4 Li+1,1+2,i+3 i+8
MPYID 9 4 Li+1,1+2,i+3 i+8,i+9
MPYDP 9 4 Li+1,1+2,i+3 i+8,i+9
@ Cycle i is in the E1 pipeline phase.
@ A write on cycle i + 4 uses a separate write port from other .D unit instructions.
SPRUFE8B-July 2010 Instruction Set 73

Copyright © 2010, Texas Instruments Incorporated

13 TEXAS
INSTRUMENTS

Parallel Operations www.ti.com

3.5

Parallel Operations

Instructions are always fetched eight words at a time. This constitutes a fetch packet. On the CPU, this
may be as many as 14 instructions due to the existence of compact instructions in a header based fetch
packet. The basic format of a fetch packet is shown in Figure 3-3. Fetch packets are aligned on 256-bit
(8-word) boundaries.

Figure 3-3. Basic Format of a Fetch Packet
31 0 31 0 31 0 31 0 31 0 31 0 31 0 31 0
'p 'p 'p 'p 'p 'p 'p 'p

Instruction Instruction Instruction Instruction Instruction Instruction Instruction Instruction
A B C D E F G H
LSBs of
the byte 00000b 00100b 01000b 01100b 10000b 10100b 11000b 11100b
address

The CPU supports compact 16-bit instructions. Unlike the normal 32-bit instructions, the p-bit information
for compact instructions is not contained within the instruction opcode. Instead, the p-bit is contained
within the p-bits field within the fetch packet header. See Section 3.10 for more information.

The execution of the individual noncompact instructions is partially controlled by a bit in each instruction,
the p-bit. The p-bit (bit 0) determines whether the instruction executes in parallel with another instruction.
The p-bits are scanned from left to right (lower to higher address). If the p-bit of instruction | is 1, then
instruction | + 1 is to be executed in parallel with (in the same cycle as) instruction I. If the p-bit of
instruction | is 0, then instruction | + 1 is executed in the cycle after instruction I. All instructions executing
in parallel constitute an execute packet. An execute packet can contain up to eight instructions. Each
instruction in an execute packet must use a different functional unit.

On the CPU, the execute packet can cross fetch packet boundaries, but will be limited to no more than
eight instructions in a fetch packet. The last instruction in an execute packet will be marked with its p-bit
cleared to zero. There are three types of p-bit patterns for fetch packets. These three p-bit patterns result
in the following execution sequences for the eight instructions:

* Fully serial
e Fully parallel
e Partially serial

Example 3-1 through Example 3-3 show the conversion of a p-bit sequence into a cycle-by-cycle
execution stream of instructions.

74

Instruction Set SPRUFE8B-July 2010

Copyright © 2010, Texas Instruments Incorporated

13 TEXAS
INSTRUMENTS

www.ti.com Parallel Operations

Example 3-1. Fully Serial p-Bit Pattern in a Fetch Packet

The eight instructions are executed sequentially.
This p-bit pattern:

31 0 31 0 31 0 31 0 31 0 31 0 31 0 31 0
io io io io io io io io

Instruction Instruction Instruction Instruction Instruction Instruction Instruction Instruction
A B C D E F G H

results in this execution sequence:

Cycle/Execute Packet Instructions
1 A

© N o N W N
I G MM mOOw

Example 3-2. Fully Parallel p-Bit Pattern in a Fetch Packet

All eight instructions are executed in parallel.
This p-bit pattern:

31 0 31 0 31 0 31 0 31 0 31 0 31 0 31 0
11 i1| i1| 11 11 11 11 11
| | | | | | |

Instruction Instruction Instruction Instruction Instruction Instruction Instruction Instruction
A B C D E F G H

results in this execution sequence:

Cycle/Execute
Packet Instructions
1 A B C D E F G H
SPRUFE8B-July 2010 Instruction Set 75

Copyright © 2010, Texas Instruments Incorporated

13 TEXAS

INSTRUMENTS
Parallel Operations www.ti.com
Example 3-3. Partially Serial p-Bit Pattern in a Fetch Packet
This p-bit pattern:
31 0 31 0 31 0 31 0 31 0 31 0 31 0 31 0
i 0 i 0 i 1 i 1 i 0 i 1 i1 i 0

Instruction Instruction Instruction Instruction Instruction Instruction Instruction Instruction
A B C D E F G H

results in this execution sequence:

Cycle/Execute Packet Instructions
1 A
2 B
3 C D E
4 F G H

3.5.1 Example Parallel Code

The vertical bars || signify that an instruction is to execute in parallel with the previous instruction. The
code for the fetch packet in Example 3-3 would be represented as this:
instruction A

instruction B
instruction

instruction
instruction

mooO

instruction
instruction
instruction

Ieom

3.5.2 Branching Into the Middle of an Execute Packet

If a branch into the middle of an execute packet occurs, all instructions at lower addresses are ignored. In
Example 3-3, if a branch to the address containing instruction D occurs, then only D and E execute. Even
though instruction C is in the same execute packet, it is ignored. Instructions A and B are also ignored
because they are in earlier execute packets. If your result depends on executing A, B, or C, the branch to
the middle of the execute packet will produce an erroneous result.

76 Instruction Set SPRUFE8B-July 2010

Copyright © 2010, Texas Instruments Incorporated

I3 TEXAS
INSTRUMENTS
www.ti.com Conditional Operations
3.6 Conditional Operations
Most instructions can be conditional. The condition is controlled by a 3-bit opcode field (creg) that
specifies the condition register tested, and a 1-bit field (z) that specifies a test for zero or nonzero. The
four MSBs of every opcode are creg and z. The specified condition register is tested at the beginning of
the E1 pipeline stage for all instructions. For more information on the pipeline, see Chapter 4. If z = 1, the
test is for equality with zero; if z = 0, the test is for nonzero. The case of creg = 0 and z = 0 is treated as
always true to allow instructions to be executed unconditionally. The creg field is encoded in the
instruction opcode as shown in Table 3-9.
Compact (16-bit) instructions on the DSP do not contain a creg field and always execute unconditionally.
See Section 3.10 for more information.
Table 3-9. Registers That Can Be Tested by Conditional Operations
Specified creg z
Conditional
Register Bit: 31 30 29 28
Unconditional 0 0 0 0
Reserved 0 0 0 1
BO 0 0 1 z
B1 0 1 0 z
B2 0 1 1 z
Al 1 0 0 z
A2 1 0 1 z
A0 1 1 0 z
Reserved 1 1 1 x®
@ x can be any value.
Conditional instructions are represented in code by using square brackets, [], surrounding the condition
register name. The following execute packet contains two ADD instructions in parallel. The first ADD is
conditional on BO being nonzero. The second ADD is conditional on BO being zero. The character !
indicates the inverse of the condition.
[BO] ADD L Al, A2, A3
[[!BO] ADD L2 B1, B2, B3
The above instructions are mutually exclusive, only one will execute. If they are scheduled in parallel,
mutually exclusive instructions are constrained as described in Section 3.8. If mutually exclusive
instructions share any resources as described in Section 3.8, they cannot be scheduled in parallel (put in
the same execute packet), even though only one will execute.
The act of making an instruction conditional is often called predication and the conditional register is often
called the predication register.
3.7 SPMASKed Operations
On the CPU, the SPMASK and SPMASKR instructions can be used to inhibit the execution of instructions
from the SPLOOP buffer. The selection of which instruction to inhibit can be specified by the SPMASK or
SPMASKR instruction argument or can be marked by the addition of a caret (*) next to the parallel code
marker as shown below:
SPMVASK
||~ LDW .DL *A0, Al ; This instruction is SPMASKed
||~ LDW . D2 *B0, B1 ;This instruction is SPMASKed
| MPY .ML A3, A4, A5 ; This instruction is Not SPMASKed
See Chapter 7 for more information.
SPRUFE8B-July 2010 Instruction Set 77

Copyright © 2010, Texas Instruments Incorporated

13 TEXAS
INSTRUMENTS

Resource Constraints www.ti.com

3.8

3.8.1

3.8.2

3.8.3

Resource Constraints

No two instructions within the same execute packet can use the same resources. Also, no two instructions
can write to the same register during the same cycle. The following sections describe how an instruction
can use each of the resources.

Constraints on Instructions Using the Same Functional Unit
Two instructions using the same functional unit cannot be issued in the same execute packet.

The following execute packet is invalid:

ADD . S1 A0, Al, A2 ;.S1 is used for
|] SHR .S1 A3, 15, M ;...both instructions

The following execute packet is valid:

ADD . L1 A0, Al, A2 ; Two different functional
|] SHR .S1 A3, 15, A4 ;...units are used

Constraints on the Same Functional Unit Writing in the Same Instruction Cycle

The .M unit has two 32-bit write ports; so the results of a 4-cycle 32-bit instruction and a 2-cycle 32-hit
instruction operating on the same .M unit can write their results on the same instruction cycle. Any other
combination of parallel writes on the .M unit will result in a conflict. On the C674x DSP this will result in an
exception.

On the C674x DSP, this will result in erroneous values being written to the destination registers.

For example, the following sequence is valid and results in both A2 and A5 being written by the .M1 unit
on the same cycle.

DOTP2 . ML AO, Al, A2 ; This instruction has 3 delay slots

NOP

AV&R2 ML A4, A5 ; This instruction has 1 del ay sl ot

NOP ;Both A2 and A5 get written on this cycle

The following sequence is invalid. The attempt to write 96 bits of output through 64-bits of write port will
fail.

SWPY2 .M A5, A6, A9: A8 ;This instruction has 3 delay slots; but generates a 64 bit
resul t

NOP

MPY . ML Al, A2, A3 ; This instruction has 1 delay slot

NOP

Constraints on Cross Paths (1X and 2X)

Up to two units (.S, .L, .D, or .M unit) per data path, per execute packet, can read a source operand from
its opposite register file via the cross paths (1X and 2X) provided that each unit is reading the same
operand.

For example, the .S1 unit can read both its operands from the A register file; or it can read an operand
from the B register file using the 1X cross path and the other from the A register file. The use of a cross
path is denoted by an X following the functional unit name in the instruction syntax (as in S1X).

The following execute packet is invalid because the 1X cross path is being used for two different B
register operands:

M/ .S1X BO, A0 ; Invalid. Instructions are using the 1X cross path
|] MW .L1X Bl, Al ; with different B registers

78

Instruction Set SPRUFE8B-July 2010

Copyright © 2010, Texas Instruments Incorporated

13 TEXAS
INSTRUMENTS

www.ti.com Resource Constraints

The following execute packet is valid because all uses of the 1X cross path are for the same B register
operand, and all uses of the 2X cross path are for the same A register operand:
ADD . L1X AO,B1,Al ; Instructions use the 1X with Bl

|] SUB .S1X A2,B1, A2 ; 1X cross paths using Bl

[| AND .D1 A4, Al A3 ;

[| MPY .ML A6, Al A4 ;

|| ADD .L2 BO,B4,B2 ;

|| SUB .S2X B4, A4,B3 ; 2X cross paths using A4

|| AND .D2X B5, A4, B4 ; 2X cross paths using A4

|| MPY .M2 BS6,B4,B5 ;

The following execute packet is invalid because more than two functional units use the same cross path
operand:

MV .L2X A0, BO ; 1st cross path nove
|] MV .S2X A0, Bl ; 2nd cross path nove
|| MV .D2X A0, B2 ; 3rd cross path nove

The operand comes from a register file opposite of the destination, if the x bit in the instruction field is set.

3.8.4 Cross Path Stalls

The DSP introduces a delay clock cycle whenever an instruction attempts to read a register via a cross
path that was updated in the previous cycle. This is known as a cross path stall. This stall is inserted
automatically by the hardware, no NOP instruction is needed. It should be noted that no stall is introduced
if the register being read has data placed by a load instruction, or if an instruction reads a result one cycle
after the result is generated.

Here are some examples:

ADD .S1 A0, A0, Al ; / Stall is introduced; Al is updated
; 1 cycle before it is used as a

ADD .S2X Al, BO, BL ; \ cross path source

ADD .Sl A0, A0, Al ; / No stall is introduced; A0 not updated
; 1 cycle before it is used as a cross
ADD .S2X A0, BO, BL ; \ path source

LDW .D1 *++A0[1], AL ; / No stall is introduced; Al is the |oad
; destination

NOP 4 ; NOP 4 represents 4 instructions to
ADD .S2X Al, BO, Bl ; \ be executed between the |oad and add.
LDW .D1 *++A0[1], Al ; / Stall is introduced; AO is updated
ADD .S2X A0, BO, Bl ; 1 cycle before it is used as a

; \ cross path source

It is possible to avo