
TMS320C6000
Network Developer's Kit (NDK) Support
Package for DSK6455

User's Guide

Literature Number: SPRUES4A
January 2007–Revised June 2008



2 SPRUES4A–January 2007–Revised June 2008
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUES4A


Contents

Preface ........................................................................................................................................ 5
1 Getting Started .................................................................................................................... 7

1.1 Introduction ................................................................................................................ 7
1.2 Installing the Support Package.......................................................................................... 7
1.3 Rebuilding HAL Libraries ............................................................................................... 15
1.4 Required Terms and Concepts ........................................................................................ 17

2 User LED Driver ................................................................................................................. 17
3 Timer Driver....................................................................................................................... 17
4 Serial Driver....................................................................................................................... 18
5 Ethernet Driver................................................................................................................... 18

5.1 Introduction ............................................................................................................... 18
5.2 Ethernet Driver ........................................................................................................... 19
5.3 Ethernet Packet Mini-Driver ............................................................................................ 20

Appendix A Revision History ...................................................................................................... 24

SPRUES4A–January 2007–Revised June 2008 Table of Contents 3
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUES4A


www.ti.com

List of Figures
1 HelloWorld Project Open in Code Composer Studio Window ......................................................... 9
2 Configuring Build Options Through Code Composer Studio ......................................................... 10
3 Enabling NIMU for Build Through Code Composer Studio ........................................................... 11
4 DSK6455 Connect Procedure ............................................................................................ 12
5 DSK6455 Connect ......................................................................................................... 13
6 helloWorld Project Running Successfully on DSK6455 ............................................................... 14
7 Source File Addition to Existing Project ................................................................................. 15
8 Ethernet HAL Build From Sources ....................................................................................... 16

List of Tables
1 Ethernet Packet Driver Source Files..................................................................................... 18
2 Structure Entries............................................................................................................ 20
A-1 Document Revision History ............................................................................................... 24

List of Figures4 SPRUES4A–January 2007–Revised June 2008
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUES4A


Preface
SPRUES4A–January 2007–Revised June 2008

Read This First

About This Manual
This document contains information about the Network Developer’s Kit (NDK) Support Package for
DSK6455. The package includes source code to HAL drivers, and examples to reuse or modify for
customer designed platforms. Pre-built HAL libraries are also delivered with the package.

How to Use This Manual
The information presented in this document is divided into the following sections:
• Section 1 – Getting Started: Introduces the NDK Support Package, which is designed to run the NDK

on DSK6455 platform.
• Section 2 – User LED Driver: Describes the user LED driver for DSK6455.
• Section 3 – Timer Driver: Describes the timer driver for DSK6455.
• Section 4 – Serial Driver: Describes the serial driver for DSK6455.
• Section 5 – Ethernet Driver: Describes the EMAC driver for DSK6455.

Notational Conventions
This document uses the following conventions:
• Program listings, program examples, and interactive displays are shown in a special typeface.
• In syntax descriptions, the function or macro appears in a bold typeface and the parameters appear in

plainface within parentheses. Portions of a syntax that are in bold should be entered as shown;
portions of syntax that are within parentheses describe the type of information that should be entered.

• Macro names are written in uppercase text; function names are written in lowercase.

Related Documentation from Texas Instruments
The following books describe the TMS320C6x™ devices and related support tools. To obtain a copy of
any of these TI documents, call the Texas Instruments Literature Response Center at (800) 477–8924.
When ordering, please identify the book by its title and literature number. Many of these documents can
be found on the Internet at http://www.ti.com.

SPRU189 — TMS320C6000 DSP CPU and Instruction Set Reference Guide. Describes the CPU
architecture, pipeline, instruction set, and interrupts for the TMS320C6000™ digital signal
processors (DSPs).

SPRU190 —TMS320C6000DSP Peripherals Overview Reference Guide. Provides an overview and
briefly describes the peripherals available on the TMS320C6000™ family of digital signal
processors (DSPs).

SPRU197 —TMS320C6000 Technical Brief. Provides an introduction to the TMS320C62x™ and
TMS320C67x™ digital signal processors (DSPs) of the TMS320C6000™ DSP family. Describes
the CPU architecture, peripherals, development tools and third-party support for the C62x™ and
C67x™ DSPs.

SPRU198 —TMS320C6000 Programmer's Guide. Reference for programming the TMS320C6000™
digital signal processors (DSPs). Before you use this manual, you should install your code
generation and debugging tools. Includes a brief description of the C6000 DSP architecture and
code development flow, includes C code examples and discusses optimization methods for the C
code, describes the structure of assembly code and includes examples and discusses optimizations
for the assembly code, and describes programming considerations for the C64x™ DSP.
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Related Documentation from Texas Instruments www.ti.com

SPRU509 — Code Composer Studio Development Tools v3.3 Getting Started Guide introduces
some of the basic features and functionalities in Code Composer Studio™ to enable you to create
and build simple projects.

SPRU523 — TMS320C6000 Network Developer’s Kit (NDK) Software User’s Guide. Describes how to
use the NDK libraries, how to develop networking applications on TMS320C6000™ platforms, and
ways to tune the NDK to fit a particular software environment.

SPRU524 — TMS320C6000 Network Developer’s Kit (NDK) Software Programmer’s Reference
Guide. Describes the various API functions provided by the stack libraries, including the low level
hardware APIs.

Trademarks
TMS320C6x, TMS320C6000, TMS320C62x, TMS320C67x, C62x, C67x, C64x, Code Composer Studio,
DSP/BIOS are trademarks of Texas Instruments.
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1 Getting Started

1.1 Introduction

1.2 Installing the Support Package

User's Guide
SPRUES4A–January 2007–Revised June 2008

TMS320C6000 Network Developer's Kit (NDK) Support
Package for DSK6455

This section introduces the NDK support package for DSK6455.

The TMS320C6000 NDK Support Package for DSK6455 includes:
• Source codes and pre-built libraries for NDK Hardware Adaptation Layer (HAL) drivers
• NDK examples

There are four basic HAL drivers required to operate the NDK: timer, user LED, serial port, and Ethernet.
The Support Package provides the Ethernet, and user LED drivers specific to DSK6455 platform. The
timer driver and serial stub driver are used from the NDK. The timer driver is implemented by using the
DSP/BIOS™ PRD module from NDK.

1. Install the Code Composer Studio software using the Code Composer Studio CD, if not installed
already; it must be installed before the NDK Support Package software. Make sure that you install a
version of Code Composer Studio 3.3 or higher.

2. Install the NDK software, if not already installed.
3. Copy the ti.ndk.platforms.dsk6455.tar under <NDK_INSTALL_DIR>\packages directory, and untar it.

The support package installs over the NDK installation. Once installed, the following directories are
created under the <NDK_INSTALL_DIR>/packages/ti/ndk directory:
• <docs/DSK6455> Documentation files for the support package
• <example/network/cfgdemo/DSK6455> Code Composer Studio project files for cfgdemo example
• <example/network/client/DSK6455> Code Composer Studio project files for client example
• <example/network/helloWorld/DSK6455> Code Composer Studio project files for helloWorld

example
• <example/tools/DSK6455> Common tools used by the support package
• <lib/hal/DSK6455> Pre-built HAL libraries for DSK6455
• <src/hal/DSK6455/eth_c6455> Source code for the C6455 EMAC driver
• <src/hal/DSK6455/userled_c6455> Source code for DSK6455 LED driver

4. The network management interface unit (NIMU) is introduced in NDK 1.94.00.001 as an alternative to
LL packet architecture to add support for multiple instances of drivers. Several builds of the Ethernet
driver libraries are provided with NIMU and LL architectures for Big and Little Endian architectures
under <lib/hal/DSK6455>. The libraries are named as <lib_name>.lib for little endian and
<lib_name>e.lib for big endian. The libraries built using NIMU are named as <lib_name>_nimu.lib and
the ones built using LL architecture are named as <lib_name>_ll.lib.
Please choose the most appropriate version of the library based on the endianness and whether
NIMU/LL is required and rename the library to just <lib_name>.lib for using it with any example
projects.
For example, If an application requires NIMU little endian HAL ethernet driver, rename
<lib/hal/dsk6455/hal_eth_c6455_nimu.lib> to <lib/hal/dsk6455/hal_eth_c6455.lib>.
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Getting Started www.ti.com

5. Choose the appropriate version of the user LED driver and rename it, based on endianness. The little
endian version of the library is named as <lib_name>.lib and the big endian counterpart is named as
<lib_name>e.lib.
For example, If the target board is big-endian platform then copy over the
<lib/hal/dsk6455/hal_userled_c6455e.lib> to <lib/hal/dsk6455/hal_ userled_c6455.lib>.

6. Copy the correct NDK libraries for testing based on endianness and NIMU/LL architectures.
For example, to compile your application with NIMU for a little endian target, change the directory to
<NDK_INSTALL_DIR>/packages/ti/ndk/lib/C64plus> and execute the following commands at the
command prompt:
copy netctrl_nimu.lib netctrl.lib
copy nettool_nimu.lib nettool.lib
copy all_stk\stk_nimu.lib stack.lib
For more details on choosing and building in appropriate NDK libraries, see the NDK Libraries and
Building in NIMU sections of the TMS320C6000 Network Developer's Kit (NDK) User's Reference
Guide (SPRU523).

7. Configure the wnvironment variables; for DSK6455 the following variables should be configured
NDK_INSTALL_DIR = <ndk_1_94 installation directory>

8. Make sure that the PC is connected through USB/JTAG to the DSK6455 correctly. Click on the Code
Composer Studio icon typically placed on the Desktop of the PC to open Code Composer Studio as
shown below.

The Code Composer enumerates the USB and should pop up. If there are any errors and the USB
enumeration fails,check the USB connectivity with the board and refer to the Quick Start Guide
which is a part of the Digital Spectrum CD.
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www.ti.com Getting Started

9. Open Code Composer. Click on Project → Open and browse to the
<NDK_INSTALL_DIR>/packages/ti/ndk/example/network/helloWorld/dsk6455>. Select the
helloWorld.pjt. It should open up the project as shown in Figure 1:

Figure 1. HelloWorld Project Open in Code Composer Studio Window
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Getting Started www.ti.com

10. To build the example project with NIMU enabled using Code Composer Studio (CCS) IDE, please
follow the following steps:
a. Open the application project in Code Composer Studio IDE. Go to Project → Build Options and

click on it as shown in Figure 2:

Figure 2. Configuring Build Options Through Code Composer Studio
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www.ti.com Getting Started

2. Click on Preprocessor in the Category box of the Compiler tab on the Build Options tab that
appears, as shown in Figure 3:

Figure 3. Enabling NIMU for Build Through Code Composer Studio

c. Add the following constant at the end and click the OK button to apply the settings in the Pre-Define
Symbol (-d) box as shown in Figure 3:
_INCLUDE_NIMU_CODE;

d. Finally, build the application project by following the steps mentioned next, to make sure NIMU is
built into the final executable.
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Getting Started www.ti.com

11. Connect to the debugger on the DSK6455 by either entering Alt + C or by clicking on Debug →
Connect if not already connected, as shown in Figure 4.

Figure 4. DSK6455 Connect Procedure
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www.ti.com Getting Started

12. Once connected, Figure 5 shows up displaying that the Code Composer Studio debugger is now
connected to the target.

Figure 5. DSK6455 Connect
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13. Enter F7 or go to Project → Build and click on it to build the project. Once the project is built without
any errors, load the project onto the DSK6455 platform by clicking on File → Load Program and
browsing to bin folder of the helloWorld project and select helloWorld.out. To start the helloWorld
application on the target, enter F5 or click on Debug → Run as shown in Figure 6

Figure 6. helloWorld Project Running Successfully on DSK6455
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1.3 Rebuilding HAL Libraries
www.ti.com Getting Started

Code Composer Studio is the recommended tool to rebuild the HAL libraries, if needed. To build any
specific HAL library from Code Composer Studio, add the relevant HAL library sources to the Code
Composer Studio application project and recompile as illustrated in the steps below:
1. Right click on the project file in the Project window, as shown in Figure 7, and select Add Files to

Project, to add any HAL library sources to the Code Composer Studio project. This opens up a window
so that you can browse to the required HAL sources directory and select the appropriate source code
files and add them.

Figure 7. Source File Addition to Existing Project
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For example, to add Ethernet driver source files, browse to
<NDK_INSTALL_DIR>/packages/ti/ndk/src/hal/dsk6455/eth_c6455>
and select the required .c files as shown in Figure 8.

Figure 8. Ethernet HAL Build From Sources

To rebuild the DSK6455 Ethernet driver from sources, ensure the following files are added to
project:
With NIMU add:
<NDK_INSTALL_DIR>/packages/ti/ndk/src/hal/dsk6455/eth_c6455/c6455.c>
<NDK_INSTALL_DIR>/packages/ti/ndk/src/hal/dsk6455/eth_c6455/c6455_mdio.c>
<NDK_INSTALL_DIR>/packages/ti/ndk/src/hal/dsk6455/eth_c6455/nimu_eth6455.c>
With LL add:
<NDK_INSTALL_DIR>/packages/ti/ndk/src/hal/dsk6455/eth_c6455/c6455.c>
<NDK_INSTALL_DIR>/packages/ti/ndk/src/hal/dsk6455/eth_c6455/c6455_mdio.c>
<NDK_INSTALL_DIR>/packages/ti/ndk/src/hal/dsk6455/eth_c6455/llpacket.c>
To rebuild the DSK6455 user LED driver from sources, ensure the following file is added to project:
<NDK_INSTALL_DIR>/packages/ti/ndk/src/hal/dsk6455/userled_c6455/llled.c>
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1.4 Required Terms and Concepts

1.4.1 HAL Driver Source Files

1.4.2 Network Control Module (NETCTRL)

1.4.3 Stack Event (STKEVENT) Object

1.4.4 Packet Buffer (PBM) Object

2 User LED Driver

3 Timer Driver

www.ti.com User LED Driver

For further explanation on the user LED driver and Ethernet driver files and their contents, see
Section 2 and Section 5 of this document, respectively.

2. Rebuild the project once the necessary HAL library source files have been added to the project.

To port the NDK Support Package device drivers, you should be familiar with the following concepts.

Section 1.3 described how to build different HAL drivers for DSK6455.

The network control module (NETCTRL) is at the center of the NDK and controls the interface of the HAL
device drivers to the internal stack functions.

The NETCTRL module and its related APIs are described in both the TMS320C6000 Network Developer's
Kit (NDK) Software Programmer's Reference Guide (SPRU524) and the TMS320C6000 Network
Developer's Kit (NDK) Software User's Guide (SPRU523). To write device drivers, you must be more
familiar with NETCTRL. The description given in the TMS320C6000 Network Developer's Kit (NDK)
Software User's Guide (SPRU523) is more appropriate for device driver work.

The STKEVENT event object is a central component to the low-level architecture. It ties the HAL layer to
the scheduler thread in the network control module (NETCTRL). The network scheduler thread waits on
events from various device drivers in the system, including the Ethernet, serial, and timer drivers.

The device drivers use the STKEVENT object to inform the scheduler that an event has occurred. The
STKEVENT object and its related API are described in the TMS320C6000 Network Developer's Kit (NDK)
Programmer's Reference Guide (SPRU524). Device driver writers need to be familiar with STKEVENT.

The PBM object is a packet buffer that is sourced and managed by the Packet Buffer Manager (PBM).
The PBM is part of the OS adaptation layer. It provides packet buffers for all packet based devices in the
system. Therefore, the serial port and Ethernet drivers both make use of this module.

The PBM object and its related API are described in the TMS320C6000 Network Developer's Kit (NDK)
Programmer's Reference Guide (SPRU524). The TMS320C6000 Network Developer's Kit (NDK) User's
Guide (SPRU523) also includes a section on adapting the PBM to a particular included software.

This section describes the User LED software. The User LED driver is a collection of functions that turn on
and off LED lights on the DSK6455 platform. There is only one C file for the User LED: LLLED.C LED
driver, located in the subdirectory SRC\HAL\DSK6455\USERLED_C6455.

This section discusses the software that drives event timing. The timer driver determines the timing for all
time driven events in the NDK. The DSK6455 platform uses the NDK provided timer_bios driver, which is
implemented using a DSP/BIOS PRD object.
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4 Serial Driver

5 Ethernet Driver

5.1 Introduction

5.1.1 Ethernet Driver Source Files

Serial Driver www.ti.com

There are no serial drivers supported on the DSK6455 platform. The NDK delivered serial stub driver is
used instead.

This section describes the operational theory of the low-level Ethernet driver, including instructions on the
use and porting of the device driver source code.

The Ethernet packet driver, provided in NDK, is broken down into two parts: a device independent upper
layer and a device dependent layer. The device dependent layer is called a mini-driver because it only
implements a subset of the full driver functions; the mini-driver API is documented at the end of this
section. The device independent upper layer of the Ethernet packet driver can be implemented in two
ways: using the old-style LL packet driver architecture and using the new NIMU architecture. The NIMU
architecture enables the NDK stack to control and communicate with multiple instances of a driver. This is
more beneficial when compared to the old LL packet driver architecture; originally the NDK stack could
communicate with only one instance of the LL driver at a time. An NDK Ethernet driver developer needs to
make a design choice of either going with the LL packet driver or NIMU architectures and develop the
driver accordingly. The LL packet driver architecture API is documented in the Hardware Adaptation Layer
(HAL) section of the TMSC320C6000 Network Developer’s Kit (NDK) Programmer’s Reference Guide
(SPRU524). The NIMU architecture and API are described in detail in the Network Interface Management
Unit section of the TMS320C6000 Network Developer’s Kit (NDK) Programmer’s Reference Guide
(SPRU524). Also, the NIMU NDK core stack changes and build instructions can be found in the Stack
Library Design and Building in NIMU sections of the TMS320C6000 Network Developer’s Kit (NDK) User’s
Guide (SPRU523), respectively.

The Ethernet packet driver source files are located in various subdirectories according to their function.

Table 1. Ethernet Packet Driver Source Files
Directory File Function
<SRC\HAL\DSK6455\ETH_C6455> Source code of the Texas Instruments C6455

Ethernet driver
NIMU_ETH6455.C Hardware independent portion of Ethernet packet

driver using NIMU architecture
LLPACKET.C Hardware independent portion of the low-level

Ethernet packet driver
LLPACKET.H Private include file for LLPACKET and NIMU

drivers
C6455.C Packet mini-driver for C6455 EMAC
C6455_MDIO.C MDIO control functions for C6455 EMAC
C6455_MDIO.H Header file of MDIO file
C6455_COMMON.H Common peripheral register structures and

definitions
CSLR.H Central register layer - contains field-manipulation

macro definitions
CSLR_DEV.H Register descriptions for DEV
CSLR_ECTL.H Register descriptions for ECTL
CSLR_EMAC.H Register descriptions for EMAC
CSLR_MDIO.H Register descriptions for MDIO
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5.2 Ethernet Driver

5.2.1 Important Note on Data Alignment

5.2.2 Hardware Independent Low-Level Ethernet Driver

5.2.3 Hardware Specific Low-Level Ethernet (Mini) Driver

www.ti.com Ethernet Driver

The NDK LL packet driver API and the NIMU API are discussed in the Hardware Adaptation Layer (HAL)
and Network Interface Management Unit sections of the TMS320C6000 Network Developer's Kit (NDK)
Programmer's Reference Guide (SPRU524), respectively, which includes how to implement the individual
API functions. The sections below discuss the implementation of an Ethernet packet mini-driver.

The NDK libraries have been built with the assumption that the IP header in a data packet is 16-bit
aligned. In other words, the first byte of the IP packet (the version/length field) must start on an even 16-bit
boundary. In any fixed length header protocol, this requirement can be met by backing off any odd byte
header size, and adding it to the header padding specified to the stack. For Ethernet and peer to peer
protocol (PPP), the only requirement is that the Ethernet or PPP packet not start on an odd byte
boundary.

In addition, all drivers in the NDK are set up to have a 22 byte header. This is the header size of a PPPoE
packet when sent using a 14 byte Ethernet header. When all arriving packets use the 22 byte header, it
guarantees that they can be routed to any egress device with a header requirement up to that size. For
Ethernet operation, this requires that a packet has 8 bytes of pre-pad to make its total header size 22
bytes.

The value of this pre-pad is #defined as PKT_PREPAD in the file LLPACKET.H.

The low-level Ethernet packet driver is similar to the low-level serial port driver. It consists of two parts: a
hardware independent module and a hardware specific module, which makes the hardware specific
portion of the driver easier to port. When deciding how to port the packet driver, you must choose for the
device independent module either the LLPACKET.C or the NIMU enabled counterpart NIMU_ETH6455.C.
Currently, the choice between NIMU and LLPacket modules is based on whether the pre-processor
symbol _INCLUDE_NIMU_CODE is defined or not. If this constant is not defined, LLPACKET.C is
compiled in, otherwise NIMU_ETH6455.C is compiled in. For instructions to build in NIMU using Code
Composer Studio, see Step 10 in Section 1.2 of this document, and the TMS320C6000 Network
Developer’s Kit (NDK) User’s Guide (SPRU523).

The standard API to access the packet device, as defined in the Hardware Adaptation Layer (HAL) section
of the TMS320C6000 Network Developer's Kit (NDK) Programmer's Reference Guide (SPRU524), is
implemented by the LLPACKET.C module. The NIMU architecture and API, described in detail in the
Network Interface Management Unit section of the TMS320C6000 Network Developer’s Kit (NDK)
Programmer’s Reference Guide (SPRU524), is implemented by the NIMU_C6455.C module. The NIMU
enabled module can handle multiple device instances, and is charged with handling the queuing for all
received packet data.

To implement the low-level packet API in a device independent manner, the LLPACKET.C or
NIMU_ETH6455.C modules call down to a hardware specific module.

The interface functions to this module are defined in the LLPACKET.H include file. They are documented
to some degree in the example source code of the hardware specific modules. The LLPACKET.H file also
contains the specifications for the buffering of packets.

The mini-driver module is a device driver specific to its target hardware. Its basic function is to
communicate with the Ethernet MAC hardware. It also must interface to any other hardware specific to the
target platform. For example, it can set up interrupts, cache control, and the EDMA controller.

The interface specification is capable of handling multiple devices, but the example implementations
mostly only support a single device instance. Notes are made in the source code as to where alterations
can be made to support multiple devices.
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5.3 Ethernet Packet Mini-Driver

5.3.1 Overview

5.3.2 Global Instance Structure

Ethernet Driver www.ti.com

As mentioned in the previous section, the low-level Ethernet packet driver is broken down into two distinct
parts: a hardware independent module (LLPACKET.C/NIMU_ETH6455.C) that implements the
llPacket/NIMU APIs and a hardware specific module that interfaces to the hardware independent module.
This section describes this small hardware specific module, or mini-driver.

Note that this module is purely optional. A valid packet driver can be developed by directly implementing
the llPacket/NIMU API described in the TMS320C6000 Network Developer's Kit (NDK) Programmer's
Reference Guide (SPRU524). Even if the mini-driver is used, you may change any of the internal data
structures as long as the llPacket/NIMU interface remains unchanged.

Nearly all the functions in the mini-driver API take a pointer to a packet driver instance structure called
PDINFO. This structure is defined in LLPACKET.H:
//
// Packet device information
//
typedef struct _pdinfo {

uint PhysIdx; // Physical index of this device
(0 to –1)

HANDLE hEther; // Handle to logical driver
STKEVENT_Handle hEvent;
UINT8 bMacAddr[6]; // MAC Address
uint Filter; // Current RX filter
uint MCastCnt; // Current MCast Address Countr
UINT8 bMCast[6*PKT_MAX_MCAST];
uint TxFree; // Transmitter "free" flag
PBMQ PBMQ_tx; // Tx queue (one for each PKT

device)
#ifdef _INCLUDE_NIMU_CODE

PBMQ PBMQ_rx; // Rx queue (one for all PKT
devices)
#endif
} PDINFO;

Only some of these fields are used in a mini-driver. The structure entries are defined as follows:

Table 2. Structure Entries
Field Description
PhysIdx Physical Index of This Device (0 to –1). The physical index of the device determines

how the device instance is represented to the outside world. The mini-driver is not
concerned about the physical index.

hEther Handle to Ethernet Driver. This is a handle NDK Ethernet instance that is bound to the
physical Ethernet driver. When a packet is received, it is tagged with this Ethernet
handle before being placed on the global PBMQ_rx queue. This allows the Ethernet
module to identify the ingress device.

hEvent Handle to Scheduler Event Object. The handle hEvent is used with the STKEVENT
function STKEVENT_signal() to signal the system whenever a new packet is received.

bMacAddr Ethernet MAC Address. This is a byte array that holds the Ethernet MAC address. It is
set to a default value by LLPACKET.C/NIMU_ETH6455.C, but can be used or altered
by the mini-driver when the device opens. If the MAC contains its own unique MAC
address, this value is written to bMacAddr. If the MAC does not have a MAC address,
the value bMacAddr programs the MAC device.
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5.3.3 Mini-Driver Operation

5.3.3.1 Receive Operation

5.3.3.2 Transmit Operation

www.ti.com Ethernet Driver

Table 2. Structure Entries (continued)
Field Description
Filter Current Rx Filter. The receive filter determines how the packet device should filter

incoming packets. This field is set by LLPACKET.C/NIMU_ETH6455.C and used by the
mini-driver to program the MAC. Legal values include:

• ETH_PKTFLT_NOTHING: No Packets
• ETH_PKTFLT_DIRECT: Only directed Ethernet
• ETH_PKTFLT_BROADCAST: Directed plus Ethernet Broadcast
• ETH_PKTFLT_MULTICAST: Directed, Broadcast, and selected Ethernet Multicast
• ETH_PKTFLT_ALLMULTICAST: Directed, Broadcast, and all Multicast
• ETH_PKTFLT_ALL: All packets

MCastCnt Number of Multicast Addresses Installed. The field holds the current number of
multicast addresses stored in the multicast address list (also in this structure). The
multicast address list determines what multicast addresses (if any) the MAC is allowed
to receive.

bMCast Multicast Address List. This field is a byte array of consecutive 6 byte multicast MAC
addresses. The number of valid addresses is stored in the MCastCnt field. The
multicast address list determines what multicast addresses (if any) the MAC is allowed
to receive.

TxFree Transmitter Free Flag. The TxFree flag is used by LLPACKET.C/NIMU_ETH6455.C to
determine if a new packet can be sent immediately by the mini-driver, or if it should be
placed on the transmit pending queue for later. If the flag is not zero, the mini-driver
function HwPktTxNext() is called when a new packet is queued for transmission. This
flag is maintained by the mini-driver.

PBMQ_tx Transmit Pending Queue. The transmit pending queue holds all the packets waiting to
be sent on the Ethernet device. The mini-driver pulls PBM packet buffers off this queue
in its HwPktTxNext() function and posts them to the Ethernet MAC for transmit. Once
the packet has been transmitted, the packet buffer is freed by calling PBM_free().

The Ethernet packet mini-driver maintains the device hardware, and services any required
communications interrupts. It is built around a simple open/close concept. When open, the driver is active,
and when closed, it is not. In general, it must implement the mini-driver API described in the following
section. The following sections provide additional information on its internal operation.

The mini-driver receives packets when the device is open. When an Ethernet packet is received, it is
placed in a PBM packet buffer. Empty packet buffers are allocated by calling PBM_alloc().

Once the packet buffer is filled, it should be placed onto the receive pending queue (PBMQ_rx) defined in
the LLPACKET.H. For LLPacket style devices, there is only one RX queue for all Ethernet devices,
therefore, the mini-driver must set the RX IF device to the value of hEther in the instance structure before
placing it on the RX queue. Contrary to this, the NIMU style devices have one RX queue each for each
Ethernet device instance; therefore, the mini-driver can simply en-queue the packet buffer onto the RX
queue of that Ethernet instance.

After the data frame buffer has been pushed onto the Rx queue, the mini-driver signals an Ethernet event
to the STKEVENT handle supplied in the driver instance structure.

When the transmitter is idle, the mini-driver must set the TxFree field of its instance structure to 1. When a
new packet is ready for transmission, LLPACKET.C/NIMU_ETH6455.C places the PBM packet buffer on
the PBMQ_tx queue of the mini-driver's instance structure.
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5.3.4 Ethernet Packet Mini-Driver API

HwPktInit — Initialize Packet Driver Environment www.ti.com

Once a new packet has been written to the transmit pending queue, if TxFree is set,
LLPACKET.C/NIMU_ETH6455.C calls the mini-driver HwPktSendNext() function. At this time, the
mini-driver should clear the TxFree field, and start transmission of the packet. Once the packet has been
sent, the packet buffer is freed by calling PBM_free(). This call can be made at interrupt time.

The following API functions must be provided by a mini-driver.

HwPktInit Initialize Packet Driver Environment

Syntax uint HwPktInit();

Parameters None

Return Value The number of Ethernet packet devices in the system

Description Called to initialize the packet mini-driver environment, and enumerate the number of
devices in the system. A device instance may be opened for each device represented in
the return count. If the function returns zero, no devices are supported.

HwPktShutdown Shutdown Packet Driver Environment

Syntax void HwPktShutdown();

Parameters None

Return Value None

Description Called to indicate that the packet driver environment should be completely shut down.

HwPktOpen Open Ethernet Packet Device Instance

Syntax uint HwPktOpen( PDINFO *pi );

Parameters pi- Pointer to Ethernet packet device instance structure

Return Value Returns 1 if the driver was opened, or 0 on error.

Description Called to open a packet device instance. When called, PDINFO structure is valid. The
device should be opened and made ready to receive and transmit Ethernet packets.

HwPktClose Close Ethernet Packet Device Instance

Syntax void HwPktClose( PDINFO *pi );

Parameters pi- Pointer to Ethernet packet device instance structure

Return Value None

Description Called to close a packet device instance. When called, any outstanding packet buffers
held by the instance should be freed using PBM_free().
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www.ti.com HwPktTxNext — Transmit Next Buffer in Transmit Queue

HwPktTxNext Transmit Next Buffer in Transmit Queue

Syntax void HwPktTxNext( PDINFO *pi );

Parameters pi- Pointer to Ethernet packet device instance structure

Return Value None

Description Called to indicate that a packet buffer has been queued in the transmit pending queue
contained in the device instance structure, and LLPACKET.C/NIMU_ETH6455.C
believes the transmitter to be free (TxFree set to 1). The mini-driver uses this function to
start the transmission sequence.

HwPktSetRx Set Ethernet Rx Filter

Syntax void HwPktSetRx( PDINFO *pi );

Parameters pi- Pointer to Ethernet packet device instance structure

Return Value None

Description Called when the values contained in the PDINFO instance structure for the Rx filter or
multicast list are altered. The mini-driver should update its filter settings at this time.

HwPktIoctl Execute Driver Specific IOCTL Command

Syntax uint HwPktIoctl(PDINFO *pi, uint cmd, void *arg);

Parameters pi- Pointer to Ethernet packet device instance structure

cmd - Device specific command

arg - Pointer to command specific argument

Return Value This function returns 1 on success.

Description Execute driver specific IOCTL command. There is no command
defined for existing driver.

_HwPktPoll Mini-Driver Polling Function

Syntax void _HwPktPoll( SDINFO *pi, uint fTimerTick );

Parameters pi- Pointer to serial device instance structure

fTimerTick- Flag indicating the 100 ms have elapsed

Return Value None

Description Called by LLPACKET.C/NIMU_ETH6455.C at least every 100 ms, but calls can come
faster when there is network activity. The mini-driver is not required to perform any
operation in this function, but it can be used to check for device lockup conditions. When
the call is made due to the 100 ms time tick, the fTimerTick calling parameter is set.

Note that this function is not called in kernel mode (hence, the underscore in the name).
This is the only mini-driver function called from outside kernel mode (done to support
polling drivers).
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Table A-1 lists the changes made since the previous version of this document.

Table A-1. Document Revision History
Reference Additions/Modifications/Deletions
Section 1.2 Replaced contents with new source
Section 1.3 Replaced contents with new source
Section 5.1 Replaced contents with new source

Table 2 Replaced contents of the table
Section 5.2 Replaced contents with new source

Section 5.2.2 Changed title of the section
Section 5.2.2 Replaced contents with new source
Section 5.3.1 Replaced contents with new source
Section 5.3.2 Replaced contents with new source
Section 5.3.2 Replaced text in table - bMacAddr
Section 5.3.2 Replaced text in table - Filter
Section 5.3.2 Replaced text in table - TxFree

Section 5.3.3.1 Replaced contents with new source
Section 5.3.3.2 Replaced contents with new source
Section 5.3.4 Replaced text in module - HwPktTxNext
Section 5.3.4 Replaced text in module - _HwPktPoll
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